首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解,试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-r+1(其中k1+…+kn-r+1=1).
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解,试证它的任一解可表示为 x=k1η1+…+kn-r+1ηn-r+1(其中k1+…+kn-r+1=1).
admin
2021-02-25
137
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…,η
n-r+1
是它的n—r+1个线性无关的解,试证它的任一解可表示为
x=k
1
η
1
+…+k
n-r+1
η
n-r+1
(其中k
1
+…+k
n-r+1
=1).
选项
答案
Ax=A(k
1
η
1
+…+k
n-r+1
η
n-r+1
)=k
1
Aη
1
+…+k
n-r+1
Aη
n-r+1
=k
1
b+…+k
n-r+1
b=(k
1
+…+k
n-r+1
)b=b. 所以xk
1
η
1
+…+k
n-r+1
η
n-r+1
是方程组Ax=b的解. 设β是Ax=b的任一解,令ζ
i
=η
i
—η
n-r+1
,则ζ
i
是Ax=0的解, 设k
1
ζ
1
+k
2
ζ
2
+…+k
n-r
ζ
n-r
=0,即k
1
(η
1
—η
n-r+1
)+…+k
n-r
(η
n-r
一η
n-r+1
)=0. 从而有k
1
η
1
+…+k
n-r
η
n-r
一(k
1
+…+k
n-r
)η
n-r+1
=0,而η
1
,η
2
,…,η
n-r+1
线性无关,所以k
1
=…=k
n-r
=0,所以ξ
1
,ξ
2
,…,ξ
n-r
线性无关,从而可得它们是Ax=0的一个基础解系.所以存在λ
1
,λ
2
,…,λ
n-r
使β一η
n-r+1
1=λ
1
ξ
1
+…+λ
n-r
ξ
n-r
,即 β=λ
1
ξ
1
+…+λ
n-r
ξ
n-r
+η
n-r+1
=λ
1
(η
1
一η
n-r+1
)+…+λ
n-r
(η
n-r
一η
n-r+1
)+η
n-r+1
=λ
1
η
1
+…+λ
n-r
η
n-r
+(1—λ
1
—λ
2
—…—λ
n-r
)η
n-r+1
=λ
1
η
1
+…+λ
n-r
η
n-r
+λ
n-r+1
η
n-r+1
其中λ
n-r+1
=1一λ
1
一λ
2
一…一λ
n-r
满足λ
1
+λ
2
+…+λ
n-r
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/t484777K
0
考研数学二
相关试题推荐
设A是n阶可逆阵,其每行元素之和都等于常数a,证明:(1)a≠0;(2)A-1的每行元素之和均为.
[*]
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设A=,则下列矩阵中与A合同但不相似的是
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设三阶方阵A,B满足A—1BA=6A+BA,且,则B=______。
设三阶方阵A,B满足A—1BA=6A+BA,且,则B=______。
设A,B均为n阶方阵,|A|=2,|B|=一3,则|A-1B*一A*B-1|=_______.
随机试题
下列关于企业经营决策的说法中,错误的是()。
简述使用数据流程图进行分析时应遵循的原则。
磺脲类药物的主要副作用是
起搏器植入术后健康教育包括
手、足三阳经在头部的分布规律是()
根据现行《公路工程质量检验评定标准》的划分,()为分部工程。
施工企业既搞建筑安装,又搞建筑材料销售,其应纳税种为()。
根据《刑事诉讼法》的相关规定,下列说法错误的是()。
下列关于离婚的说法,正确的有
小康社会
最新回复
(
0
)