首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A。
admin
2018-02-07
70
问题
设三阶实对称矩阵A的特征值为λ
1
=一1,λ
2
=λ
3
=1,对应于λ
1
的特征向量为ξ
1
=(0,1,1)
T
,求A。
选项
答案
设矩阵A的属于特征值λ=1的特征向量为x=(x
1
,x
2
,x
3
)
T
。 实对称矩阵A的属于不同特征值的特征向量正交,所以ξ
1
T
x=0,即x
2
+x
3
=0。方程组x
2
+x
3
=0的基础解系为ξ
2
=(1,0,0)
T
,ξ
3
=(0,一1,1)
T
。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pTk4777K
0
考研数学二
相关试题推荐
拟建一个容积为V的长方体水池,设它的底为正方形,如果池底单位面积的造价是四周单位面积造价的2倍,试将总造价表示成底边长的函数,并确定此函数的定义域。
A、0<p≤1时条件收敛B、0<p≤1时绝对收敛C、p>1时条件收敛D、0<p≤1时发散A
某厂每批生产某种商品x单位的费用为C(x)=5x+200得到的收益是R(x)=10x-0.01x2问每批生产多少单位时才能使利润最大?
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
求在抛物线y=x2上横坐标为3的点的切线方程.
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
随机试题
螺纹升角Φ的计算公式是()。
为了消除腐败、廉洁为政,某部门除了大力提倡工作人员要求严格自律之外,还一直实行着一种岗位轮换制度,规定处级以上的干部在同一岗位工作不得超过五年。这种做法可以认为是一种()
A.南葶苈子B.菟丝子C.酸枣仁D.北葶苈子E.沙苑子播娘蒿的干燥成熟种子是
以下哪种先天性心脏病属右向左分流型
下列选项中,属于融资租赁特点的是()。
依据契税的相关规定,下列各项应征收契税的是()。
下列属于短期金融工具的是()。
索赔时只在经济合同的实施过程中,合同中的一方因对方不履行或未能履行合同所规定的义务而受到损失,向对方提出赔偿要求。当发生索赔事件时,按照索赔的程序,承包人首先应()。
三角形内角之和等于180°,这是古希腊数学家欧几里得提出的定理。在此之后的两千多年里,人们一直把它当作任何条件下都适用的真理。但是,19世纪初,俄国数学家罗巴切夫斯基提出:在凹曲面上,三角形内角之和小于180°。随后,德国数学家黎曼提出:在球形凸面上,三角
InpartsofBrazil’spoornortheast,snakesandparrotsareonsalebytheroadsideforafewreais.InBrazil,aselsewherein
最新回复
(
0
)