首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问: 进货量为多少时商店获利的期望值最大?(φ(1.65)=0.95,φ(0.95)=0.83,其中φ(
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问: 进货量为多少时商店获利的期望值最大?(φ(1.65)=0.95,φ(0.95)=0.83,其中φ(
admin
2019-02-26
50
问题
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问:
进货量为多少时商店获利的期望值最大?(φ(1.65)=0.95,φ(0.95)=0.83,其中φ(x)为标准正态分布函数)
选项
答案
设进货量为n件,则商品获利 [*] 已知概率密度f(x),故 EY=Eg(X,n) =∫
-∞
+∞
g(x,n)f(x)dx =∫
-∞
n
(600x-100n)f(x)dx+∫
n
+∞
500nf(x)dx =∫
-∞
n
600xf(x)dx-100n∫
-∞
n
f(x)dx-∫
-∞
n
500nf(x)dx+∫
-∞
n
500nf(x)dx+∫
n
+∞
500nf(x)dx =600∫
-∞
n
xf(x)dx-600n∫
-∞
n
f(x)dx+500n∫
-∞
+∞
f(x)dx =600 ∫
-∞
n
xf(x)dx-600n∫
-∞
n
f(x)dx+500n. 记 g(a)=600∫
-∞
a
xf(x)dx-600a∫
-∞
a
f(x)dx+500a. 令 g(’a)=600af(a)-600
2
∫
-∞
a
f(x)dx-600af(a)+500=0, [*] 所以进货量为102件时商店获利的期望值最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/pU04777K
0
考研数学一
相关试题推荐
设随机变量X1,…,Xn,…相互独立,记Yn=X2n一X2n-1(n≥1),根据大数定律,当n→∞时依概率收敛到零,只要{Xn,n≥1}
下列矩阵中,正定矩阵是
设A是m×n阶矩阵,则下列命题正确的是().
下列矩阵中,不能相似对角化的矩阵是()
求齐次线性方程组的通解,并将其基础解系单位正交化。
讨论方程组的解,并求解。
设线性方程组(Ⅰ)证明当a1,a2,a3,4两两不相等时,方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),并且β1=(-1,1,1)T和β2=(1,1,-1)T是两个解。求此方程组的通解。
设二维随机变量(X,Y)的概率密度为f(x,y)=,—∞<x<+∞,—∞<y<+∞,求常数A及条件概率密度fY|X(Y|x)。
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本。求:(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量。
设随机变量X服从正态分布N(0,1),对给定的α(0<α<1),数uα满足P{X>uα)=a,若P{|X|<x}=a,则x等于()
随机试题
数据库应用系统中的核心问题是()。
简述矛盾的同一性和斗争性的含义以及二者的辩证关系。
《壮悔堂文集》的作者是()
在锻造18-8铬镍不锈钢中不属于镍的作用的是
A、分子中有咪唑并噻唑结构B、分子中有嘧啶结构C、分子中有喹啉结构D、分子中有过氧基结构E、分子中含有硫原子青蒿素
A.丙磺舒B.对乙酰氨基酚C.别嘌醇D.秋水仙碱E.盐酸赛庚啶在体内通过抑制黄嘌呤氧化酶,减少尿酸的生物合成,降低血中尿酸浓度的抗痛风药物是()。
()是马克.杰斐逊早在1939年对国家城市规模分布规律的一种概括。
税务登记证件上应当载明的内容有()。
计划具有的意义有()。
AthatmaycauseourbloodvesselstobecomemoreandmorenarrowBforpregnantwomentotakeduringtheirlastsixmonthsofp
最新回复
(
0
)