首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问: 进货量为多少时商店获利的期望值最大?(φ(1.65)=0.95,φ(0.95)=0.83,其中φ(
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问: 进货量为多少时商店获利的期望值最大?(φ(1.65)=0.95,φ(0.95)=0.83,其中φ(
admin
2019-02-26
63
问题
商店销售某种季节性商品,每售出一件获利500元,季度末未售出的商品每件亏损100元,以X表示该季节此种商品的需求量,若X服从正态分布N(100,4),问:
进货量为多少时商店获利的期望值最大?(φ(1.65)=0.95,φ(0.95)=0.83,其中φ(x)为标准正态分布函数)
选项
答案
设进货量为n件,则商品获利 [*] 已知概率密度f(x),故 EY=Eg(X,n) =∫
-∞
+∞
g(x,n)f(x)dx =∫
-∞
n
(600x-100n)f(x)dx+∫
n
+∞
500nf(x)dx =∫
-∞
n
600xf(x)dx-100n∫
-∞
n
f(x)dx-∫
-∞
n
500nf(x)dx+∫
-∞
n
500nf(x)dx+∫
n
+∞
500nf(x)dx =600∫
-∞
n
xf(x)dx-600n∫
-∞
n
f(x)dx+500n∫
-∞
+∞
f(x)dx =600 ∫
-∞
n
xf(x)dx-600n∫
-∞
n
f(x)dx+500n. 记 g(a)=600∫
-∞
a
xf(x)dx-600a∫
-∞
a
f(x)dx+500a. 令 g(’a)=600af(a)-600
2
∫
-∞
a
f(x)dx-600af(a)+500=0, [*] 所以进货量为102件时商店获利的期望值最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/pU04777K
0
考研数学一
相关试题推荐
当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n=________.
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,若C=,则|C|=
设二维随机变量(X1,X2)的密度函数为f1(x1,x2),则随机变量(Y1,Y2)(其中Y1=2X1,Y2=X2)的概率密度f2(y1,y2)等于()
设x2+y2≤2ay(a>0),则f(x,y)dxdy在极坐标下的累次积分为().
设随机变量X的概率密度为f(x),则可以作为概率密度函数的是()
已知线性方程组有解(1,-1,1,-1)T。(Ⅰ)用导出组的基础解系表示通解;(Ⅱ)写出x=x时的全部解。
讨论方程组的解,并求解。
(2017年)设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,证明:(I)方程f(x)=0在区间(0,1)内至少存在一个实根;(11)方程f(x)f(x)+[f′(x)]2=0在区间(0,1)内至少存在两个不同的实根。
设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机取出一个地区,再从中抽取两份报名表.求先抽到的一份报名表是女生表的概率p;
随机试题
中国共产党把毛泽东思想确定为党的指导思想的会议是()
PKA可使效应蛋白中下列哪种氨基酸残基磷酸化
最常见的原发性肝癌的病理形态分型为()
背景材料:某一级公路的桥梁工程,采用钻孔灌注桩基础,承台最大尺寸为:长8m、宽6m、高3m,梁体为现浇预应力钢筋混凝土箱梁。桩身混凝土浇筑前,项目技术负责人到场就施工方法对作业人员进行了口头交底,随后立即进行1号桩桩身混凝土浇筑,导管埋深保持在0.5~
下列销售的应税消费品中,不得列入加权平均计算的是()。
(新疆2012—29)8,9,17,44,108,233,()
UNCTAD
如果某次考试平均分是75分,方差是25,小刘得了78分,那么,小刘的分数转化为T分数是()
以下所列各项属于命令按钮事件的是( )。
Fasterthaneverbefore,thehumanworldisbecominganurbanworld.Bythemillionstheycome,theambitiousandthedown-trodd
最新回复
(
0
)