首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[一a,a](a>0)上具有三阶连续导数,且f(一a)=一a,f(a)=a,f′(0)=0.证明:在开区间(一a,a)内至少存在一点ξ,使a。f"(ξ)=6.
设函数f(x)在闭区间[一a,a](a>0)上具有三阶连续导数,且f(一a)=一a,f(a)=a,f′(0)=0.证明:在开区间(一a,a)内至少存在一点ξ,使a。f"(ξ)=6.
admin
2020-05-02
45
问题
设函数f(x)在闭区间[一a,a](a>0)上具有三阶连续导数,且f(一a)=一a,f(a)=a,f′(0)=0.证明:在开区间(一a,a)内至少存在一点ξ,使a。f"(ξ)=6.
选项
答案
方法一 由麦克劳林公式,对任意x∈[-a,a],有 [*] ξ介于0和x之间. 分别令x=-a与a,由f′(0)=0,得 [*] 以上两式相减,得[*]即 [*] 由于f"′(x)在[ξ
1
,ξ
2
]上连续,故f"′(x)在[ξ
1
,ξ
2
]上必存在最大值M与最小值m,因此 [*] 由闭区间上连续函数的介值定理,至少存在一点ξ∈[ξ
1
,ξ
2
][*](-a,a),使 [*] 即a
2
f"′(ξ)=6 方法二 令[*]则F(-a)=F(0)=F(a)=0.分别在[-a,0]与[0,a]上对F(x)使用罗尔中值定理,知存在ξ
1
∈(-a,0)与ξ
2
∈(0,a),使 F′(ξ
1
)=F′(ξ
2
)=0 又 [*] 分别在[ξ
1
,0]与[0,ξ
2
]上对F′(x)使用罗尔中值定理,知存在η
1
∈(ξ
1
,0),η
2
∈(0,ξ
2
),使 F"(η
1
)=F"(η
2
)=0 在[η
1
,η
2
]上对F"(x)用罗尔中值定理,知存在ξ∈[η
1
,η
2
][*](-a,a),使F"′(ξ)=0,而[*]故有a
2
f"′(ξ)=6.
解析
转载请注明原文地址:https://kaotiyun.com/show/pXv4777K
0
考研数学一
相关试题推荐
求摆线的曲率半径.
已知A=,且有AXB=AX+A2B-A2+B,求X。
设则f(x)的间断点为x=___________。
设则f(x,y)在点O(0,0)处()
(2010年)设则
设f(x)在x=0的某邻域内连续,若则f(x)在x=0处().
设y=2e-x+exsinx为y"’+py"+qy’+ry=0的特解,则该方程为_________.
A、绝对收敛.B、条件收敛.C、发散.D、敛散性与a有关.B由莱布尼兹法则知原级数收敛.因此是条件收敛.选(B).
利用对角线法则计算下列三阶行列式:
分别应用克拉默法则和逆矩阵解下列线性方程组:
随机试题
大多数气田的天然气是可燃性气体,主要成分是(),还含有少量非烃气体。
在化工管路中,通常在管路的相对低点安装有排气阀。
术前常规禁食的主要目的是
干金苇茎汤与大黄牡丹汤共有的药物是仙方活命饮与透脓散共有的药物是
开放性气胸患者呼吸困难最主要的急救措施是()。
可转债持有人申报转股的可转债数量大于其实际可用可转债余额的,应按其申报数量办理转股。()
与以往的银行理财产品相比,代客境外理财产品具有的特点是()。
我国的反洗钱工作开始于2001年。2001年9月,中国人民银行成立了反洗钱工作领导小组。2002年9月,中国人民银行制定了《金融机构反洗钱规定》、《从民币大额和可疑支付交易报告管理办法》和《金融机构大额和可疑外汇资金交易报告管理办法》(简称“一规定两办法”
唐代前期是修史的“黄金时期”,相继问世了八部断代史书,号称“唐修八史”。下列选项不属于“唐修八史”的是()。
以下关系表达式中,其值为假的是:______。
最新回复
(
0
)