首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
admin
2018-05-21
51
问题
设二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
经过正交变换X=QY化为标准形f=y
1
2
+y
2
2
+4y
3
2
,求参数a,b及正交矩阵Q.
选项
答案
二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
的矩阵形式为 f=X
T
AX [*] 所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4. 而|λE-A|=λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2),所以有λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2)=(λ-1)
2
(λ-4), 解得a=2,b=1.当λ
1
=λ
2
=1时,由(E-A)X=0得ξ
1
[*] λ
3
=4时,由(4E-A)X=0得ξ
3
=[*]显然ξ
1
,ξ
2
,ξ
3
两两正交,单位化为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pZr4777K
0
考研数学一
相关试题推荐
设A,B,C是三个随机事件,P(ABC)=0,且0<P(C)<1,则一定有()
已知(1,一1,0)T是二次型xTAx=αx12+x32一2x1x2+2x1x3+2bx2x3的矩阵A的特征向量,利用正交变换化二次型为标准形,并写出所用的正交变换和对应的正交矩阵。
设y=e3x(C1cosx+C2sinx)(C1,C2为任意常数)为某二阶常系数齐次线性微分方程的通解,则该方程为________。
设矩阵Am×n经过若干次初等行变换后得到B,现有4个结论,其中正确的是()①A的行向量均可由B的行向量线性表示;②A的列向量均可由B的列向量线性表示;③B的行向量均可由A的行向量线性表示;④B的列向量均可由A的列向量线性表示。
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ).
设,若存在秩大于1的三阶矩阵B使得BA=0,则An=________.
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求二次型xT(A*)-1x的表达式,并确定其正负惯性指数.
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求正交矩阵Q
随机试题
A.黄连清心饮B.三才封髓丹C.程氏革藓分清饮D.知柏地黄丸
A.感染率B.续发率C.引入率D.死亡率E.累积死亡率在某些传染病最短潜伏期到最长潜伏期之间,易感接触者中发病的人数占所有易感接触者总数的百分率,称为
欧盟输往中国的货物使用阔叶树木材做木质包装的,可由出口商出具《使用非针叶树木质包装声明》。 ( )
从会计师事务所、银行、咨询机构等处得到的资料属于历史资料。()
切断物流系统和其他系统之间的联系,只要物流糸统本身功效完备,物流系统还是能发挥其应有的作用而得以时间生存。
柏拉图认为教育应该是国家的。()
1930年5月,为反对当时中国工农红军中的教条主义思想,毛泽东撰写了重要著作《反对本本主义》。这是毛泽东最早的一篇马克思主义哲学著作。在这篇著作中,他提出了
WhenitcomestoBarbie’sbody,itwillnolongerbeonesizefitsall.OnThursday,Mattelunveiledcurvy,petiteandtallvers
[文字开始]一般我们看到的电脑都是由主机(主要部分)、输出设备(显示器)、输入设备(键盘和鼠标)三大部件组成。而主机是电脑的主体,在主机箱中有:主板、CPU、内存、电源、显卡、声卡、网卡、硬盘、软驱、光驱等硬件。从基本结构上来讲,电脑可以分
Forthispart,youareallowed30minutestowriteashortessayentitledStatisticsofFamilyExpenses.Youshouldwriteatlea
最新回复
(
0
)