首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn-r线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn-r线性无关。
admin
2019-01-19
128
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
选项
答案
假设η
*
,η
*
+ξ
1
,η
*
+ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n-r
(η
*
+ξ
n-r
)=0, 即 (c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n-r
)η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
] =(c
0
+c
1
…+c
n-r
)Aη
*
+c
1
Aξ
1
+…+c
n-r
Aξ
n-r
=(c
0
+c
1
…+c
n-r
)b, 因为b≠0,故c
0
+c
1
+…+c
n-r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,则c
0
=0,与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n-r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/pbP4777K
0
考研数学三
相关试题推荐
(11年)已知当χ→0时,函数f(χ)=3sinχ-sin3χ与cχk是等价无穷小,则【】
(05年)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是【】
设随机变量(X,Y)的概率密度为问X与Y是否独立?|X|与|Y|是否独立?
已知3阶方阵A=(aij)3×3的第1行元素为:a11=1,a12=2,a13=-1.(A*)T=其中A*为A的伴随矩阵.求矩阵A.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设A、B都是n阶方阵,且A2=E,B2=E,|A|+|B|=0,证明:|A+B|=0.
设g(x)在x=0的某邻域内连续,且,已知在x=0处连续,求a,b.
设A,B为同阶方阵,(1)如果A,B相似,试证:A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证:(1)的逆命题成立.
设f(x)在[一a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x—t)dt,f(0)=0,证明:存在一点ξ∈[一a,a],使得a4|f"’(ξ)|=12∫—aa|f(x)|dx.
设f(x)为二阶可导的偶函数,f(0)1,f"(0)=2且f"(x)在x=0的邻域内连续,则
随机试题
“教然后知困”、“能者为师”、“弟子不必不如师”等说明了我国师生关系的哪一特点?()
哪些信件属于要约?为什么?如果建筑公司未能在4月10日给甲水泥厂回信的,该买卖合同是否成立?为什么?
资格后审方法比较适合于()的招标项目。
认为新的技术发展会带来新的危险源,安全工作的目标就是控制危险源,努力把事故发生概率降到最低。这一观点是包含在()理论中的。
以毛作净就是以净重代替毛重。()
《物业管理条例》第六十二条规定:物业管理企业将一个物业管理区域内的全部物业管理一并委托给他人的,由县级以上地方人民政府房地产行政主管部门责令限期改正,处委托合同价款()的罚款。
下列名称的软件全部属于数据库系统的是()。
求(x一)的展开式中有理项的系数和.
萨尔贡
以非法占有为目的,擅自砍伐国家、集体所有的森林或者其他林木,数量较大的,构成()。
最新回复
(
0
)