首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
admin
2018-09-20
68
问题
A是3阶矩阵,λ
1
,λ
2
,λ
3
是三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是相应的特征向量.证明:向量组A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关的充要条件是A是可逆矩阵.
选项
答案
A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关[*]λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
线性无关[*][λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
]=[ξ
1
,ξ
2
,ξ
3
][*]秩为3 [*]|A|=λ
1
λ
2
λ
3
≠0,A是可逆矩阵(因为ξ
1
,ξ
2
,ξ
3
线性无关,[*]=2λ
1
λ
2
λ
3
≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/pkW4777K
0
考研数学三
相关试题推荐
设,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设随机变量X~N(μ,σ2),Y~U[一π,π],且X,Y相互独立,令Z=X+Y,求fZ(z).
设随机变量X的密度函数为f(x)=则P{|X一E(X)|<2D(X)}=________.
设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.求θ的矩估计量;
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
设I=xydxdy,其中D由曲线y=y=一x和y=所围成,则I的值为().
下列函数中在点x=0处可微的是().
已知f(x)=ax3+x2+2在x=0和x=一1处取得极值,求f(x)的单调区间、极值点和拐点.
随机试题
当梁突出顶棚的高度超过0.8m时,被梁隔断的每个梁间区域应至少设置一只探测器。()
患者女性,32岁。因纳差3天、发热伴咳嗽2天、意识模糊、烦躁半天急诊入院。妊娠36周。有慢性乙肝病史10年。体检:R28次/分,P88次/分,BP120/75mmHg。神志恍惚;巩膜中度黄染,有肝掌,颈部可见散在分布的蜘蛛痣;右下肺闻及湿啰音,心脏听诊无明
华康公司的净资产是否符合发行公司债券的条件?为什么?该公司本想发行股票,但因不完全具备发行股票的条件,想发行可转换为股票的公司债券,这一愿望能否实现?
某施工项目中,发包人提供的施工图纸存在错误,承包人按图施工,最终造成质量缺陷。在此情况下,发包人应承担()。
施工单位在堤防施工过程中的质量检验工作制度包括()。
根据(消费税暂行条例)的规定,纳税人自产的用于下列用途的应税消费品中,不需要缴纳消费税的是( )。
保险合同的主要特征不包括()
项目沟通管理通常包括组织元素间的信息沟通管理和人际沟通管理两部分。基本的项目信息管理技术内容有________。
我国解决民族问题的根本出发点是()。
二次型f(x1,x2,x3)=(a1x1+a2x2+ax3x3)(b1x1+b2x2+b3x3)的矩阵为__________。
最新回复
(
0
)