首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
admin
2018-09-20
79
问题
A是3阶矩阵,λ
1
,λ
2
,λ
3
是三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是相应的特征向量.证明:向量组A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关的充要条件是A是可逆矩阵.
选项
答案
A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关[*]λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
线性无关[*][λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
]=[ξ
1
,ξ
2
,ξ
3
][*]秩为3 [*]|A|=λ
1
λ
2
λ
3
≠0,A是可逆矩阵(因为ξ
1
,ξ
2
,ξ
3
线性无关,[*]=2λ
1
λ
2
λ
3
≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/pkW4777K
0
考研数学三
相关试题推荐
设,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设随机变量X和Y相互独立,且分布函数为FX(x)=FY(y)=令U=X+Y,则U的分布函数为________.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=αk(k=1,2,3,4).证明:当n充分大时,随机变量Zn=;近似服从正态分布,并指出其分布参数.
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:第一次抽取后不放回.
设A,B,C,D都是n阶矩阵,r(C4+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
若直线y=x与对数曲线y=logax相切,则a=().
已知f(x)=ax3+x2+2在x=0和x=一1处取得极值,求f(x)的单调区间、极值点和拐点.
随机试题
企业家特殊技能(包括精神和技巧)的集合是()
“纯国际避税地”一般是指
符合创伤愈合的描述是
女,48岁。绝经1年,阴道少许接触性出血,妇查:宫颈中度糜烂,宫体大小正常,宫颈刮片二次均为阴性,若进一步确诊,应选下述哪项检查
某公司在某省某城市承包了一个油库改造项目。项目包括新增5个2600m3储油罐,对原有部分输油管道进行改造。整个改造工程4月1日开工,工期120天。中间只允许罐区日常工作停工5天,从而完成管线的连接。新建储油罐与原轻质储油罐的最近距离8m;储油罐设
在下列各项中,属于工程项目建设投资的有( )。
按照中国传统的四时划分和节气安排,下列中属于夏季的节气包括()。
简述南京国民政府时期《中华民国民法》的主要特点。(2012年非法学综合课简答第66题)
设z=f(e2t,sin2t),其中f二阶连续可偏导,则=________.
DearTed,Atlastmydreamhascometrue.Iknowyouwillbegladtolearnthatwehaveboughtahouse,foryouknowhowmuchI
最新回复
(
0
)