首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明: (Ⅰ)对任意正整数n,都有成立; (Ⅱ)设an=1+—ln n,(n=1,2,…),证明{an}收敛。
证明: (Ⅰ)对任意正整数n,都有成立; (Ⅱ)设an=1+—ln n,(n=1,2,…),证明{an}收敛。
admin
2017-12-29
79
问题
证明:
(Ⅰ)对任意正整数n,都有
成立;
(Ⅱ)设a
n
=1+
—ln n,(n=1,2,…),证明{a
n
}收敛。
选项
答案
(Ⅰ)令[*]=x,则原不等式可化为 [*]<ln(l +x)<x,x>0。 先证明ln(1+x)<x,x>0。 令f(x)=x—ln(1+x)。 由于 f’(x)=1—[*]>0,x>0, 可知f(x)在[0,+∞)上单调递增。又由于f(0)=0,因此当x>0时,f(x)>f(0)=0。 也即 ln(1+x)<x,x>0。 再证明[*]<ln(1+x),x>0。 令g(x)=ln(1+x)—[*]。 由于 [*] 可知g(x)在[0,+∞)上单调递增。又因g(0)=0,因此当x>0时,g(x)>g(0)=0。 即 [*]<ln(1+x),x>0。 因此,有 [*]<ln(1+x)<x,x>0。 再代入[*]=x,即可得到所需证明的不等式。 (Ⅱ)a
n+1
— a
n
=[*] 可知数列{a
n
}单调递减。 又由不等式 [*] 因此数列{a
n
}是有界的。由单调有界收敛定理可知数列{a
n
}收敛。
解析
转载请注明原文地址:https://kaotiyun.com/show/pmX4777K
0
考研数学三
相关试题推荐
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性相关;
已知A,B为3阶相似矩阵,λ1=1,λ2=2为A的两个特征值,|B|=2,则行列式=________.
计算(a>0是常数).
当上述级数收敛时,求其和函数S(x),并求∫ln2ln3S(x)dx.
求级数
求方程=(1一y2)tanx的通解以及满足y(0)=2的特解.
微分方程的通解是________.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设x=rcosθ,y=rsinθ,把下列直角坐标系中的累次积分改写成极坐标系(r,θ)中的累次积分:
设f(t)连续并满足f(t)=cos2t+∫0xf(t)sinsds,求f(t)。
随机试题
在对管道FBE涂层补口时,采用的工艺是高压静电喷涂。
哪一种物质不是初级胆汁酸?
某企业第1年初向银行借款500万元,年利率为7%,银行规定每季度计息一次。若企业向银行所借本金与利息均在第4年末一次支付,则支付额为( )万元。
下列属于输出设备常见的有()。
借款人应当向银行如实提供所有开户行、账号及存贷款余额情况,使银行可以真实掌握借款人资金运行情况。银行通过调查、审查、检查了解借款人的生产经营情况,确保贷款的()
“如果你的两个得力下属一直吵架.你会怎么处理?”这类问题属于()。
哪一个运动员不想出现在奥运会的舞台上,并在上面尽情表演?如果以上陈述为真,以下哪项陈述必定为假?()
为了防止森林火灾,美国的森林专家想出了一个“以火防火”的好办法:要求森林管理人员定期选择风速小、气温低、温度大的天气,人为烧去乔木下面的小树、灌木、干枝和枯叶,以预防自然起火,并有助于扑灭森林大火。由此不可推出的结论是( )。
做产品的初心,一定可以归结到便利二字,因为一切新技术、能促使消费者大规模换代的新产品,大多是为了解决现实世界中_______的、不够便利的问题而生。因此,真正能做到了“简便”的产品,往往是_______的。填入画横线部分最恰当的一项是:
青藏铁路(Qinghai-TibetRailway)是西部大开发(WesternDevelopmentProgram)的标志性工程,是中国新世纪四大工程之一。该铁路东起青海西宁,西至西藏拉萨,全长1956公里。新建线路1110公里,于2001年6月2
最新回复
(
0
)