首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明: (Ⅰ)对任意正整数n,都有成立; (Ⅱ)设an=1+—ln n,(n=1,2,…),证明{an}收敛。
证明: (Ⅰ)对任意正整数n,都有成立; (Ⅱ)设an=1+—ln n,(n=1,2,…),证明{an}收敛。
admin
2017-12-29
61
问题
证明:
(Ⅰ)对任意正整数n,都有
成立;
(Ⅱ)设a
n
=1+
—ln n,(n=1,2,…),证明{a
n
}收敛。
选项
答案
(Ⅰ)令[*]=x,则原不等式可化为 [*]<ln(l +x)<x,x>0。 先证明ln(1+x)<x,x>0。 令f(x)=x—ln(1+x)。 由于 f’(x)=1—[*]>0,x>0, 可知f(x)在[0,+∞)上单调递增。又由于f(0)=0,因此当x>0时,f(x)>f(0)=0。 也即 ln(1+x)<x,x>0。 再证明[*]<ln(1+x),x>0。 令g(x)=ln(1+x)—[*]。 由于 [*] 可知g(x)在[0,+∞)上单调递增。又因g(0)=0,因此当x>0时,g(x)>g(0)=0。 即 [*]<ln(1+x),x>0。 因此,有 [*]<ln(1+x)<x,x>0。 再代入[*]=x,即可得到所需证明的不等式。 (Ⅱ)a
n+1
— a
n
=[*] 可知数列{a
n
}单调递减。 又由不等式 [*] 因此数列{a
n
}是有界的。由单调有界收敛定理可知数列{a
n
}收敛。
解析
转载请注明原文地址:https://kaotiyun.com/show/pmX4777K
0
考研数学三
相关试题推荐
设f(x)在(一∞,+∞)内连续,以T为周期,证明:∫f(x)dx(即f(x)的全体原函数)周期为T∫0Tf(x)dt=0.
计算二重积分其中D={(x,y)|0≤y≤x,x2+y2≤2x}.
设D={(x,y)|a≤x≤b,c≤y≤d),若f"xy与f"yx在D上连续.证明:
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
已知一2是的特征值,其中b≠0是任意常数,则x=________.
对于级数,其中um>0(n=1,2,…),则下列命题正确的是()
设,求实对称矩阵B,使A=B2.
若二次型f(x1,x2,x3)一2x12+x22+x23+2x1x2+tx2x3是正定的,则t的取值范围是________。
随机试题
下列行为中构成专利侵权的是()。
从造字法来看,“明”是_____字。
女,65岁,因头痛、右侧肢体无力7天入院。胸片:右肺可见圆形病灶,头部CT提示脑转移瘤,肿瘤周围脑水肿明显。本例瘤周水肿系
某研究者收集了2种疾病患者痰液内嗜酸性粒细胞的检查结果,整理成下表:若要比较2种疾病患者痰液内的嗜酸性粒细胞数是否有差别应选择
在下列关于财务管理“引导原则”的说法中,错误的是()。
关于老年人的权益,尤其是精神方面的保护,最近进行了立法,谈谈对这一问题的看法。
关于香港特别行政区的政府,说法正确的有()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
Whatistherelationshipbetweenthetwopersons?
A—thechiefcoachB—thechiefrefereeC—thedefenderD—centreforwardE—thesecon
最新回复
(
0
)