首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2016-06-25
47
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。
证明:对任何a∈[0,1],有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
令F(a)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1),a∈[0,1],则 F’(a)=g(a)f’(a)一f’(a)g(1)=f’(a)[g(a)一g(1)]. 因为x∈[0,1]时,f’(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f’(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(1)g(1) =f’[g(x)f(x)]’dx一f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以,F(a)≥F(1)=0,即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1)≥0, 即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/pnt4777K
0
考研数学二
相关试题推荐
证明:当x>0时,(x2-1)lnx≥(x-1)2.
求极限
设f(x)在x=2处连续,且[2f(3-x)-3]/(x-1)=-1,则曲线y=f(x)在点(2,f(2))处的切线方程为________.
设f(x)是二阶常系数非齐次线性微分方程y″+py′+qy=sin2x+2ex的满足初始条件f(0)=f′(0)=0的特解,则当x→0时,().
讨论曲线y=4Inx+k与y=4x+In4x的交点个数.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
曲线y=x5-4x+2的拐点是________。
设周期函数f(x)在(-∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为________.
设(n=1,2,…)证明{xn}收敛,并求极限。
设某商品从时刻0到时刻t的销售量为x(t)=kt,t∈[0,T](K>0),欲在T时将数量为A的该商品售完,试求:t时的商品剩余量,并确定k的值。
随机试题
老年患者,大便艰涩,排出困难,四肢不温,腹中冷痛,腰膝酸冷,舌淡苔白,脉沉迟。其治疗宜选
关于早产儿的喂养,下述哪项是错误的
A.自牙颈部牙骨质向牙冠方向散开,止于游离龈和附着龈固有层的牙龈纤维B.自牙槽嵴向牙冠方向展开,穿过固有层止于游离龈和附着龈固有层的牙龈纤维C.位于牙颈周围的游离龈中,呈环行排列的牙龈纤维D.自牙颈部的牙骨质,越过牙槽突外侧皮质骨骨膜,进入牙槽突、前
如图所示,桁架结构中只作用悬挂重块的重力W,此桁架中杆件内力为零的杆数为:
原始凭证金额出现错误的,应当由开具单位更正,并在更正处加盖出具凭证单位的印章。 ( )
与单一法人客户相比,()不是集团法人客户的信用风险具有的特征。
甲为一有限责任公司的小股东,不参与公司经营管理。根据公司法律制度的规定,下列文件中,甲有权查阅和复制的有()。(2009年)
上海中心大厦楼高()米,外观为正方形柱体。
丽丽因为自己常常遭受来自丈夫的家暴而找到社会工作者。社会工作者根据()迹象认为丽丽已经具有“受虐妇女综合征”的特质。
Becauseofthecomingheavyrain,theracingcompetitionofyourcollegecan’tbeheldattheopen-airplayground.Writeanotic
最新回复
(
0
)