首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2016-06-25
56
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。
证明:对任何a∈[0,1],有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
令F(a)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1),a∈[0,1],则 F’(a)=g(a)f’(a)一f’(a)g(1)=f’(a)[g(a)一g(1)]. 因为x∈[0,1]时,f’(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f’(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(1)g(1) =f’[g(x)f(x)]’dx一f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以,F(a)≥F(1)=0,即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1)≥0, 即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/pnt4777K
0
考研数学二
相关试题推荐
证明:当x>0时,(x2-1)lnx≥(x-1)2.
设f(x)在[-a,a](a>0)上有四阶连续的导数,且存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[-a,a].使得
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性.
设f(x)在x0的某一邻域内存在连续的三阶导数,且f’(x0)=f"(x0)=0而f"’(x0)≠0,试证(x0,f(x0))是曲线的拐点,而x0不是f(x)的极值点。
设某种商品的单价为p时,售出的商品数量Q可以表示成,其中a,b,c均为正数,且a>bc。要使销售额最大,商品单价应取何值?最大销售额是多少?
设an=,证明数列{an}没有极限。
求曲线r=3cosθ及r=1+cosθ所围成图形的公共部分的面积。
利用等价无穷小代换定理,并提出因子esinx,再应用洛必达法则得[*]
设f(x)可导,则当△x→0时,△y-dy是△x的().
设f(x)为二阶可导的奇函数,当x∈(0,+∞)时,f’(x)>0,f"(x)>0,则当x∈(-∞,0)时().
随机试题
控制实验法
A:Excuseme.IwonderifyoucanhelpustobookahotelinHongKong.
以下各药中,善于通利血脉,行而不住,走而不守的药是
中医精气神学说的“精”是指
省级环境保护行政主管部门对本辖区内环评机构进行定期考核的范围不包括()。
泰运贸易有限公司是一家小型商贸企业,2011年发生以下事项:(1)该公司办公室主任持一张领导签字的白条,报销招待费,因有领导签字,出纳人员B办理了报销手续。(2)公司供销员C持若干张差旅费发票前来报销,出纳人员B发现其中一张发票有改动的痕迹。由于怕影响
基金产品定价需要考虑的因素有()。
甲为乙对银行的债务提供担保,担保期间约定为主债务本息还清之日起。对该约定()。
ThoughWalesisvisitedmainlyforitsbeautifulscenery,ancientcastlesandcharmingsea-sideresorts,thefourthmostpopular
IfyouhappentobeshoppingintheGinzadistrictofTokyo,youmightgetamessageonyourmobilephonetellingyouwhichoft
最新回复
(
0
)