首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。 证明:对任何a∈[0,1],有 ∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2016-06-25
72
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。
证明:对任何a∈[0,1],有
∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
令F(a)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1),a∈[0,1],则 F’(a)=g(a)f’(a)一f’(a)g(1)=f’(a)[g(a)一g(1)]. 因为x∈[0,1]时,f’(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f’(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(1)g(1) =f’[g(x)f(x)]’dx一f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以,F(a)≥F(1)=0,即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1)≥0, 即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/pnt4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:(1)存在c∈(a,b),使得f(c)=0;(2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f′(ξi)-f(ξi)=0(i=1,2);
设f(x)在[-a,a](a>0)上有四阶连续的导数,且存在.(1)写出f(x)的带拉格朗日余项的麦克劳林公式;(2)证明:存在ξ1,ξ2∈[-a,a].使得
设f(x)∈c[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ-η=(ea+eb)[f′(η)+f(η)].
设D={(x,y)|0<x<1,0<Y<1},变量(X,Y)在区域D上服从均匀分布,令令U=X+Z,求U的分布函数;
求下列函数的不定积分。
设f(x)在点x=0的某个邻域内二阶可导,且,试求f(0),f’(0)及f"(0)的值。
运用导数的知识做函数的图形。
设(n=1,2,…)证明{xn}收敛,并求极限。
已知f(x)=x2-x∫02f(x)dx+2∫01f(x)dx,试求f(x).
设某商品从时刻0到时刻t的销售量为x(t)=kt,t∈[0,T](K>0),欲在T时将数量为A的该商品售完,试求:t时的商品剩余量,并确定k的值。
随机试题
A、Payforitrightaway.B、Providehercreditcardnumber.C、Confirmherpersonalinformation.D、Signacontract.B对话末尾,女士问是否需要在
2020年末,全国共有艺术表演团体17581个,从业人员43.69万人,其中各级文化和旅游部门所属艺术表演团体2060个,从业人员10.75万人。2020年,全国文化和旅游部门所属艺术表演团体共组织政府采购公益演出13.38万场,比上年下降14.9%;观众
社会主义可能分为两个阶段,第一阶段是不发达的社会主义,第二阶段是比较发达的社会主义。提出这一论断的是
功能温肺化饮,化痰止咳的药是
A.单链DNA结合蛋白B.DNA连接酶C.polα和polδD.polγE.解链酶真核生物DNA复制中起主要作用的酶是
A.以病人作为受试对象的试验B.以人作为受试对象的试验C.人体实验时必须要做到真正的知情同意D.选择受试者的时候需遵循的E.保障受试者身心安全.人体实验是
心肺脑复苏的含义是
根据存货经济订货模型,经济订货批量是能使订货成本与储存总成本相等的订货批量。()
民法规定诉讼时效一律为两年,从被侵害之日起计算。( )
朱权著的《_______》对研究元及明初杂剧有重要价值。
最新回复
(
0
)