首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组有3个线性无关的解. 证明方程组系数矩阵A的秩r(A)=2;
已知非齐次线性方程组有3个线性无关的解. 证明方程组系数矩阵A的秩r(A)=2;
admin
2016-01-11
113
问题
已知非齐次线性方程组
有3个线性无关的解.
证明方程组系数矩阵A的秩r(A)=2;
选项
答案
设ξ
1
,ξ
2
,ξ
3
是该方程组的3个线性无关的解,则ξ
1
-ξ
2
,ξ
1
-ξ
3
,是对应齐次线性方程组Ax=0的两个线性无关的解,因而4一r(A)≥2,即r(A)≤2.又A有一个二阶子式[*],于是r(A)≥2,因此r(A)=2.
解析
本题考查含参数非齐次线性方程组的求解问题.要求考生掌握向量组线性相关性的定义和证明;齐次线性方程组基础解系的概念;未知数的个数(n)一系数矩阵的秩r(A)=基础解系解向量的个数.
转载请注明原文地址:https://kaotiyun.com/show/pv34777K
0
考研数学二
相关试题推荐
某企业在两个不同市场上销售同一产品,市场价格分别为p1=18—2Q1,p2=12一Q2,其中Q1,Q2分别表示产品在两个市场上的需求量,该企业的总成本为C=2Q+5,其中Q=Q1+Q2。(I)若企业实行价格不同战略,试确定两个市场上产品的产量及价格,使得
设f(x)为可导函数,且满足条件则曲线y=f(x)在点(1,f(1))处的切线斜率为().
求幂级数的收敛域及和函数。
设A是3阶实对称矩阵,二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22-y32,A*是A的伴随矩阵,则二次型g(x1,x2,x3)-xTA*x的规范形为()
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求B;
设积分I=∫0+∞1/(xa+xb)dx(a>b>0)收敛,则()
函数f(x)=∫xx+2πesintsintdt的值().
设向量r=x2zi+xy2j+yz2k,试求散度divr在点P(2,2,1)处:(1)沿曲面x2+y2+z2=9外法线方向的方向导数;(2)最大变化率.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设3阶方阵A=(a,11,r2),B=(β,r1,r2),其中a,β,r1,r2都是3维列向量,且|A|=3,|B|=4,则|5A-2B|=_________.
随机试题
在对管道FBE涂层补口时,采用的工艺是高压静电喷涂。
哪一种物质不是初级胆汁酸?
某企业第1年初向银行借款500万元,年利率为7%,银行规定每季度计息一次。若企业向银行所借本金与利息均在第4年末一次支付,则支付额为( )万元。
下列属于输出设备常见的有()。
借款人应当向银行如实提供所有开户行、账号及存贷款余额情况,使银行可以真实掌握借款人资金运行情况。银行通过调查、审查、检查了解借款人的生产经营情况,确保贷款的()
“如果你的两个得力下属一直吵架.你会怎么处理?”这类问题属于()。
哪一个运动员不想出现在奥运会的舞台上,并在上面尽情表演?如果以上陈述为真,以下哪项陈述必定为假?()
为了防止森林火灾,美国的森林专家想出了一个“以火防火”的好办法:要求森林管理人员定期选择风速小、气温低、温度大的天气,人为烧去乔木下面的小树、灌木、干枝和枯叶,以预防自然起火,并有助于扑灭森林大火。由此不可推出的结论是( )。
做产品的初心,一定可以归结到便利二字,因为一切新技术、能促使消费者大规模换代的新产品,大多是为了解决现实世界中_______的、不够便利的问题而生。因此,真正能做到了“简便”的产品,往往是_______的。填入画横线部分最恰当的一项是:
青藏铁路(Qinghai-TibetRailway)是西部大开发(WesternDevelopmentProgram)的标志性工程,是中国新世纪四大工程之一。该铁路东起青海西宁,西至西藏拉萨,全长1956公里。新建线路1110公里,于2001年6月2
最新回复
(
0
)