首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
admin
2017-04-24
63
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
选项
答案
令φ(x)=f(x) 一 g(x),以下分两种情况讨论: 1)若f(x)和g(x)在(a,b)内的同一点处c∈(a,b)取到其最大值,则φ(c)=f(c) 一 g(c)=0,又φ(a) =φ(b)=0,由罗尔定理知 [*]ξ
1
∈(a,c),使φ’(ξ
1
)=0;[*]ξ
2
∈(c,b),使φ’(ξ
2
)=0 对φ’(x)在[ξ
1
,ξ
2
]上用罗尔定理得,[*]ξ
1
∈(ξ
1
,ξ
2
),使φ"(ξ)=0 2)若f(x)和g(x)在(a,b)内不在同一点处取到其最大值,不妨设f(x)和g(x)分别在x
1
和x
2
(x
1
<x
2
)取到其在(a,b)内的最大值,则 φ(x
1
)=f(x
1
) 一 g(x
1
)>0, φ(x
2
)=f(x
2
) 一 g(x
2
)<0 由连续函数的介值定理知,[*]c∈(x
1
,x
2
),使φ(c)=0.以下证明与1)相同.
解析
转载请注明原文地址:https://kaotiyun.com/show/pyt4777K
0
考研数学二
相关试题推荐
设f(x)在[0,2]上可导,且|f’(x)|≤M,又f(x)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M.
设函数f(x)二阶可导,且f’(x)>0,f"(x)>0,△y=f(x+△x)-f(x),其中△x<0,则().
求方程的通解。
若连续函数f(x)满足关系式f(x)=∫02πdt+ln2,则f(x)=________。
求微分方程ylnydx+(x-lny)dy=0的通解。
设线性无关函数y1(x),y2(x),y3(x)都是二阶非齐次线性方程y"+P(x)y’+Q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是________。
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
已知函数f(x)=ax3-6ax2+b(a>0),在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
随机试题
下列哪项不是机会致病菌引起医院感染率上升的原因
痢疾的病位在
工程的概、预算主要发生在()。
督察长连续3次考试成绩不及格的,中国证监会可免除其职务。()
(2014年真题)期刊的栏目设计应该()。
简述当代儿童发展观的基本内容。
决定警察必要性的直接因素是()。
请用不超过200字的篇幅,概括出给定材料所反映的主要问题。要求:全面,有条理,有层次。从政府制定政策的角度,提出解决给定资料所反映问题的对策建议。要求:有针对性,有条理,切实可行。字数不超过350字。
“渐”的作用,就是用每步相差极微极缓的方法来隐蔽时间的过去与事物的变迁的痕迹,使人误认其为恒久不变。这真是造物主骗人的一大诡计!这有一个比喻的故事:某农夫每天朝晨抱了犊而跳过一沟,到田里去工作,夕暮又抱了它跳过沟回家。每日如此,未尝间断。过了一年,犊已渐大
要在Web浏览器中查看某一电子商务公司的主页,应知道()。
最新回复
(
0
)