首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
admin
2017-04-24
38
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
选项
答案
令φ(x)=f(x) 一 g(x),以下分两种情况讨论: 1)若f(x)和g(x)在(a,b)内的同一点处c∈(a,b)取到其最大值,则φ(c)=f(c) 一 g(c)=0,又φ(a) =φ(b)=0,由罗尔定理知 [*]ξ
1
∈(a,c),使φ’(ξ
1
)=0;[*]ξ
2
∈(c,b),使φ’(ξ
2
)=0 对φ’(x)在[ξ
1
,ξ
2
]上用罗尔定理得,[*]ξ
1
∈(ξ
1
,ξ
2
),使φ"(ξ)=0 2)若f(x)和g(x)在(a,b)内不在同一点处取到其最大值,不妨设f(x)和g(x)分别在x
1
和x
2
(x
1
<x
2
)取到其在(a,b)内的最大值,则 φ(x
1
)=f(x
1
) 一 g(x
1
)>0, φ(x
2
)=f(x
2
) 一 g(x
2
)<0 由连续函数的介值定理知,[*]c∈(x
1
,x
2
),使φ(c)=0.以下证明与1)相同.
解析
转载请注明原文地址:https://kaotiyun.com/show/pyt4777K
0
考研数学二
相关试题推荐
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(x)cotξ.
证明:当0<x<1时e-2x>(1-x)/(1+x).
设f(x)在[0,2]上连续,在(0,2)内可导,且2f(0)=f(1)+f(2),证明:存在ξ∈(0,2),使得f’(ξ)=0.
设f(x)二阶可导,x=1为f(x)的极值点,且f(x)满足f"(x)+f’(x)=1+x-ex,则x=1为f(x)的________(填极大值点或极小值点).
微分方程y"+2y’+5y=0的通解为________。
设X1,X2均服从参数为λ的指数分布,且相互独立,求X1+X2的密度函数.
在一条公路的一侧有某单位的A、B两个加工点,A到公路的距离.AC为1km,B到公路的距离BD为1.5km,CD长为3km(如图4—2).该单位欲在公路旁边修建一个堆货场M,并从A、B两个大队各修一条直线道路通往堆货场M,欲使A和B到M的道路总长最短,堆货场
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
随机试题
"TheylaughedwhenIsatdownatthepiano,butwhenIstartedtoplay...!"Thesewordsmaybeamongthemostsuccessfulinad
关于肾病综合征,下列哪项不正确
A.伪麻黄碱B.多巴胺C.去甲肾上腺素D.异丙肾上腺素E.普萘洛尔可用于治疗鼻塞、流涕的药物是
假定当事人在订立合同过程中有下列()情形之一的,给对方造成损失的,应当承担损害赔偿责任。
某城市全年的盛行风向有两个方向,且不为90°,如何布置工业区域居住区较为恰当?
某施工单位为工程项目投保工程险时,对保险公司提供的格式条款提出以下看法,其中正确的是()
《中共中央关于教育体制改革的决定》的发布时间是()
按照《行政诉讼法》的规定,提起行政诉讼的条件不包括()。
在以知识为基础的经济兴起背后的基本论点是:在过去五年间,曾经存在着集中的市场激励的奇特结合,导致了计算技术、生物技术、电子通讯和运输领域巨大的技术进步,并已开始_________经济组织和政府按未来将要据以行使其职能的方式发生巨大变化的新希望。的确,有大量
A.wecanmakeexceptionsforChinesecompanies.B.Iwillintroduceyouthedetails.C.WheredoIsendtheregistrationforma
最新回复
(
0
)