首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
admin
2018-04-17
45
问题
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
(I)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
选项
答案
(I)令F(x)=∫
0
x
f(t)dt—xf(0),则F(0)=0,F=(2)=0,又因为F(x)在[0,2]上连续,在(0,2)内可导,故根据罗尔定理可得,至少存在一点η∈(0,2),使得F’(η)=0,即f(η)=f(0)。 (Ⅱ)因为f(2)+f(3)=2f(0),即[*]=f(0),又因为F(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3],使得f(η
1
)=f(0)。 因为f(x)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η)。所以由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(η
1
)。所以由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f"(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/q4X4777K
0
考研数学三
相关试题推荐
求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值.
设某商品的需求函数为Q=100-5P,其中价格P∈(0,20),Q为需求量.(1)求需求量对价格的弹性Ed(Ed>0);(2)推导=Q(1一Ed)(其中R为收益),并用弹性Ed说明价格在何范围内变化时,降低价格反而使收益增加.
求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图4—1所示).
曲线y=e-xsinx(0≤x≤3π)与x轴所围成图形的面积可表示为()
求二元函数F(x,y)=xye一(x2)+y2在区域D={x,y)|x≥0,y≥0}上的最大值与最小值.
设3阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=_________.
(2008年)计算max{xy,1}dxdy,其中D={(x,y)|0≤x≤2,0≤y≤2}。
(2017年)设随机变量为X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=,Y的概率密度为f(y)=(Ⅰ)求P{Y≤E(Y)};(Ⅱ)求Z=X+Y的概率密度。
(2017年)二元函数z=xy(3一x—y)的极值点是()
(2017年)差分方程yt+1—2yt=2t的通解为yt=______.
随机试题
网络计划技术的优点有( )
A.代谢性酸中毒B.呼吸性酸中毒C.代谢性碱中毒D.呼吸性碱中毒E.无酸碱平衡紊乱实际碳酸氢盐(AB)=标准碳酸氢盐(SB)且>正常值,表明
金瓷结合界面处理恰当与否关系到金瓷结合强度,因此严格的进行正确的处理才能保证PFM冠的质量。PFM基底冠的打磨处理中错误的是A.用钨钢针磨除贵金属表面的氧化物B.用碳化硅砂针磨除非贵金属表面的氧化物C.打磨时用细砂针多方均匀的打磨出金瓷结合部要求
贫血最早、最常见的症状是
A.上皮性肿瘤B.生殖细胞肿瘤C.性索间质肿瘤D.转移性肿瘤E.非特异性间质肿瘤卵巢颗粒细胞肿瘤为()
有关资金的时间价值推论不正确的一项为()。
小王于2010年1月购买了1万元的5年期国债,对此,小王应考虑的风险因素包括()。
在社会主义思想发展史上,最早提到社会主义发展阶段问题的经典作家是()
在SQL语言中,删除视图的语句是______。
WithinEUprimaryeducation,aclearmajorityofpupilschoosetostudyEnglishlikeaforeignlanguage.Indeed,learningEnglis
最新回复
(
0
)