首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
admin
2018-04-17
64
问题
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
(I)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
选项
答案
(I)令F(x)=∫
0
x
f(t)dt—xf(0),则F(0)=0,F=(2)=0,又因为F(x)在[0,2]上连续,在(0,2)内可导,故根据罗尔定理可得,至少存在一点η∈(0,2),使得F’(η)=0,即f(η)=f(0)。 (Ⅱ)因为f(2)+f(3)=2f(0),即[*]=f(0),又因为F(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3],使得f(η
1
)=f(0)。 因为f(x)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η)。所以由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(η
1
)。所以由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f"(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/q4X4777K
0
考研数学三
相关试题推荐
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_______.
设则下列命题正确的是()
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1时.(1)求dz;(2)记u(x,y)=
由曲线(0≤x≤π)与x轴围成的平面图形绕x轴旋转而成的旋转体体积为()
设幂级数在(一∞,+∞)内收敛,其和函数y(x)满足y”一2xy’一4y=0,y(0)=0,y’(0)=1.(1)证明:,n=1,2,…;(2)求y(x)的表达式.
设平面区域D:(x-2)2+(y-1)2≤1,若比较的大小,则有()
(2008年)设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有2阶导数,且φ’≠一1.(Ⅰ)求dz;(Ⅱ)记
(2017年)求
(2017年)若函数在x=0处连续,则()
(2017年)二元函数z=xy(3一x—y)的极值点是()
随机试题
下列有关诊断性刮宫患者的术后护理措施,不正确的是
颜面部疖、痈最常见的致病菌为
胃阴不足型呕吐的主证不包括
两种药物合用,一种药物能破坏另一种药物的功效,此种配伍关系属于
胃溃疡的好发部位是
确诊乳腺癌最可靠的诊断方法是
两根杆粘合在一起,截面尺寸如图。杆1的弹性模量为E1,杆2的弹性模量为E2,且E1=2E2。若轴向力F作用在截面形心,则杆件发生的变形是:
根据《生产安全事故报告和调查处理条例》,下列关于生产安全事故调查组的人员构成、主要工作程序与任务、责任和权力的说法中,正确的是()。
单位消防安全管理是指社会单位作为消防安全管理的主体,依照消防法规及消防安全规章制度,运用管理科学的原理和方法,通过()等职能,利用制度管理、人员管理、档案管理、消防设施设备管理、考核机制等方法,合理有效地利用各种管理资源,为实现本单位消防安全目标所
What’sHappeningWhileSleeping?Sleepisveryimportanttohumans.Theaveragepersonspends220,000hoursofalifetimes
最新回复
(
0
)