首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
admin
2018-04-17
83
问题
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
(I)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
选项
答案
(I)令F(x)=∫
0
x
f(t)dt—xf(0),则F(0)=0,F=(2)=0,又因为F(x)在[0,2]上连续,在(0,2)内可导,故根据罗尔定理可得,至少存在一点η∈(0,2),使得F’(η)=0,即f(η)=f(0)。 (Ⅱ)因为f(2)+f(3)=2f(0),即[*]=f(0),又因为F(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3],使得f(η
1
)=f(0)。 因为f(x)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η)。所以由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(η
1
)。所以由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f"(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/q4X4777K
0
考研数学三
相关试题推荐
将函数f(x)=展开成x一1的幂级数,并指出其收敛区间.
曲线在点(0,0)处的切线方程为_____.
由曲线y=1一(x一1)2及直线y=0围成图形(如图3—1所示)绕y轴旋转而成的立体的体积V是()
设幂级数在(一∞,+∞)内收敛,其和函数y(x)满足y”一2xy’一4y=0,y(0)=0,y’(0)=1.(1)证明:,n=1,2,…;(2)求y(x)的表达式.
一商家销售某种商品的价格满足关系P=7-0.2x(万元/单位),x为销售量,成本函数为C=3x+1(万元),其中x服从正态分布N(5p,1),每销售一单位商品,政府要征税t万元,求该商家获得最大期望利润时的销售量.
设则f(x,y)在点O(0,0)处()
若函数f(x)在(-∞,+∞)内满足关系式fˊ(x)=f(x),且f(0)=1.证明:f(x)=ex.
(2008年)已知f(x,y)=则()
(2008年)计算max{xy,1}dxdy,其中D={(x,y)|0≤x≤2,0≤y≤2}。
(2017年)二元函数z=xy(3一x—y)的极值点是()
随机试题
注意率
He’sfar______oftheothersinmathematics.
有关记忆的错误叙述是
A企业在B银行有一笔一年期流动资金贷款即将到期,但A企业因季节性因素影响了销售及资金回笼,资金暂时出现不足,无法偿还在B银行的贷款。下列各项中表述正确的是()。
由招标人组建的评标委员会的任务有()。
为了保证业务质量,会计师事务所应当制定指导、监督与复核的政策和程序。在复核项目组成员已执行的工作时,下列情形中,应当考虑的有()。
历时10年跟踪研究了1038名冠心病患者的实验发现运动强度和心脏健康之间的关系类似U字形曲线,每天都进行高强度锻炼的人的心血管疾病率远高于适度锻炼的人,由此说明长期高强度锻炼影响身体健康。以下哪项如果为真,最能支持上述观点?
某地发大水。多处地面低洼。存在很大的安全隐患,但群众不愿意撤离。假设考官是群众,请发表五分钟演讲。动员群众离开。
在微机的硬件设备中,有一种设备在程序设计中既可以当作输出设备,又可以当作输入设备,这种设备是( )。
A、Abalconyandadishwasher.B、Adishwasherandairconditioning.C、Aswimmingpoolandairconditioning.D、Airconditioningan
最新回复
(
0
)