首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
admin
2018-04-17
38
问题
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
(I)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
选项
答案
(I)令F(x)=∫
0
x
f(t)dt—xf(0),则F(0)=0,F=(2)=0,又因为F(x)在[0,2]上连续,在(0,2)内可导,故根据罗尔定理可得,至少存在一点η∈(0,2),使得F’(η)=0,即f(η)=f(0)。 (Ⅱ)因为f(2)+f(3)=2f(0),即[*]=f(0),又因为F(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3],使得f(η
1
)=f(0)。 因为f(x)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η)。所以由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(η
1
)。所以由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f"(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/q4X4777K
0
考研数学三
相关试题推荐
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
将函数f(x)=展开成x一1的幂级数,并指出其收敛区间.
求幂级数在区间(一1,1)内的和函数S(x).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f”(ξ)=g”(ξ).
设e<a<b<e2,证明ln2b一ln2a>
若曲线y=cosx(0≤x≤)与x轴、y轴及直线x=所围图形的面积被曲线y=asinx,y=bsinx(a>b>0)三等分,求a与b的值.
过原点作曲线y=的切线L,该切线与曲线y=及Y轴围成平面图形D.(Ⅰ)求切线L的方程.(Ⅱ)求D绕y轴旋转一周所得旋转体体积V.
设则f(x,y)在点O(0,0)处()
(2008年)求极限
(2017年)设随机变量为X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=,Y的概率密度为f(y)=(Ⅰ)求P{Y≤E(Y)};(Ⅱ)求Z=X+Y的概率密度。
随机试题
转化机构法:
《行政处罚法》规定,在行政处罚听证程序中( )。
采用债务转为资本的形式进行债务重组时,债务人为股份有限公司的,应将重组债务的账面价值超过所转换股份公允价值的差额,确认为资本公积。()
关于以权益结算的股份支付,下列说法中正确的有()。
在确定了审计差异后,注册会计师需要进一步考虑错报影响的广泛性。在固定资产项目的下列各笔错报中,影响范围最小的是()。
从年级角度看,大学生心理健康状况最差的时期是()。
影响学习动机的内部因素是()。
甲欲出售自己的房屋,与乙签订房屋买卖合同。乙支付房屋价款30万后甲交付房屋,并且约定5日后办理房屋变更登记手续。丙听闻甲要出售房屋,与甲联系,表示愿意以35万的价格购买甲的房屋,甲同意,与丙签订房屋买卖合同。丙于次日支付了全部房款并且办理了房屋变更登记手续
Email,ultimately,isafragilething,easytoforge,easytocorrupt,easytodestroy.Afewweeksagoaco-workerofmineacci
A、ThePCmarkethaspickeduprapidlyinthepastmonths.B、PCsaresoldatlowerpricesduringtheshoppingseason.C、PCshipme
最新回复
(
0
)