首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 (I)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
admin
2018-04-17
72
问题
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
(I)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f"(ξ)=0。
选项
答案
(I)令F(x)=∫
0
x
f(t)dt—xf(0),则F(0)=0,F=(2)=0,又因为F(x)在[0,2]上连续,在(0,2)内可导,故根据罗尔定理可得,至少存在一点η∈(0,2),使得F’(η)=0,即f(η)=f(0)。 (Ⅱ)因为f(2)+f(3)=2f(0),即[*]=f(0),又因为F(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3],使得f(η
1
)=f(0)。 因为f(x)在[0,η]上连续,在(0,η)上可导,且f(0)=f(η)。所以由罗尔定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0。 又因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(η
1
)。所以由罗尔定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f"(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/q4X4777K
0
考研数学三
相关试题推荐
若y=xex+x是微分方程y”一2y’+ay=bx+c的解,则()
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1时.(1)求dz;(2)记u(x,y)=
设函数f(x)满足关系式f”(x)+[f’(x)]2=x,且f’(0)=0,则()
若函数f(x)在(-∞,+∞)内满足关系式fˊ(x)=f(x),且f(0)=1.证明:f(x)=ex.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B.证明:B可逆,并推导A-1和B-1的关系.
(2017年)设生产某产品的平均成本=1+e-Q,其中Q为产量,则边际成本为_____。
(2008年)X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本。记Xi,S2=S2。(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求D(T)。
(2017年)设随机变量为X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=,Y的概率密度为f(y)=(Ⅰ)求P{Y≤E(Y)};(Ⅱ)求Z=X+Y的概率密度。
(2008年)设函数f(x)在区间[一1,1]上连续,则x=0是函数的()
(2008年)设函数f连续,若其中区域Duv为图中阴影部分,则=()
随机试题
某患者,外伤创面肉芽组织鲜红、硬实、分泌物不多,触之易出血,换药时应用
蛔虫成虫可引起的最常见的症状是()
下列各项中,属于国家统一的会计制度的有( )。
小张、小李、小王三人共同出资依法成立科星科技开发有限责任公司。小张、小李、小王各自出资情况如下:小张以科技开发所需设备出资,折合人民币8万元;小李以现金出资人民币12万元;小王以自己的一项方法发明专利技术出资,折合人民币4万元。
奶汤锅子鱼
岳阳楼竖有“四绝碑”,四绝所涉及的历史人物是()。
2018年7月,教育部印发《关于开展幼儿园“小学化”专项治理工作的通知》,针对一些幼儿园的“小学化”倾向提出了多项治理任务。何谓幼儿园“小学化”?有学者认为大致包括:1.在教育内容上重视智力教育,而轻视德、体、美、劳的生活学习体验;2.在教育方法
回避制度是我国传统任官制度的重要特点,此制始于东汉,后为历代沿袭,至清已形成一种非常重要的人事管理制度,其目的是防止官员因某些关系徇情营私。清代回避制度主要有籍贯回避、亲属回避、师生回避。清代任官的回避制度,规则繁密,超过往代,在嘉道之前执行尤为严格,在防
•Youwillhearpartofaconversationamonganinterviewer,JohnChambersandCarlyFiorina,CEOsoftwocompanies.•Foreachqu
ThepresidentoftheUnitedStateshasoneofthetoughestjobsintheworld.Hardlyanyoneelseiswatchedsocloselybysoman
最新回复
(
0
)