首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
admin
2020-03-10
54
问题
设矩阵
的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
选项
答案
矩阵A的特征多项式为 [*] =(λ一2)(λ
2
—8λ+18+3a)。 如果λ=2是单根,则λ
2
一8λ+18+3a是完全平方,必有18+3a=16,即a=[*]。则矩阵A的特征值是2,4,4,而r(4E一A)=2,故λ=4只有一个线性无关的特征向量,从而A不能相似对角化。 如果λ=2是二重特征值,则将λ=0代入λ
2
一8λ+18+3a=0可得a=一2。于是λ
2
一8λ+18+3a=(λ一2)(λ一6)。则矩阵A的特征值是2,2,6,而r(2E—A)=1,故λ=2有两个线性无关的特征向量,从而A可以相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/q8D4777K
0
考研数学三
相关试题推荐
设B是4×2的非零矩阵,且AB=O,则()
三阶矩阵A的特征值全为零,则必有()
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设u=f(x+y,xz)有二阶连续的偏导数,则=().
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{|X一μ|<σ}应该
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
证明级数条件收敛。
设随机变量X与Y相互独立,且X服从参数为p的几何分布,即P{X=m}=pqm-1,m=1,2,…,0<p<1,q=1-p,Y服从标准正态分布N(0,1).求:(Ⅰ)U=X+Y的分布函数;(Ⅱ)V=XY的分布函数.
已知一批零件的长度X(单位为cm)服从正态总体N(μ,1),从中随机抽取16个零件,测得其长度的平均值为40cm,则μ的置信度为0.95的置信区间是(注:标准正态分布函数值Ф(1.96)=0.975,Ф(1.645)=0.95)().
随机试题
A、脐疝B、腹股沟斜疝C、股疝D、腹股沟直疝E、切口疝患者男性,46岁,发现右腹股沟肿块2年,术中发现腹壁下动脉在疝囊颈外侧,应考虑为
患者女,44岁,左侧鼻塞,多清涕2年余,不伴鼻痒及打喷嚏,鼻腔检查见鼻中隔明显左偏,左中鼻道少许分泌物。鼻窦CT示:鼻中隔左偏,左侧上颌窦黏膜稍增厚,最适当的治疗是
下列肋骨中可称为假肋的是
孕妇,36岁。妊娠10周,休息时仍感胸闷、气急。查体:脉搏120次/分,呼吸22次/分,心界向左侧扩大,心尖区有Ⅱ级收缩期杂音,肺底有湿啰音,应采取的处理措施是
对工程项目进行全面管理的中心的是()
在民事诉讼程序中,下列情形可以缺席判决的有()。
在销售与收款循环的审计中,丙注册会计师确定的审计目标是“所有销售交易均已登记入账”,针对这一审计目标,下列说法中错误的是()。在生产与存货循环的审计中,丙注册会计师实施监盘程序,无法实现的审计目标是()。
一般资料:求助者,女性,35岁,已婚,工厂普通工人。案例介绍:有一次求助者上班时眼看就要迟到,就急匆匆地往车间里跑,不小心与公司男领导撞了个满怀,同事们顿时都笑起来,还有人吹起口哨,大家事后还总拿他们开玩笑。以后求助者每次去车间都会紧张,觉得同事
水仙(清)李渔水仙一花,予之命也。予有四命,各司一时:春以水仙兰花为命;夏以莲为命;秋以秋海棠为命;冬以腊梅为命。无此四花,是无命也。一季夺予一花,是夺予一季之命也。水仙以秣陵①为最,
[*]
最新回复
(
0
)