首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在. 证明:存在ξ1,ξ2∈[一a,a],使得
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在. 证明:存在ξ1,ξ2∈[一a,a],使得
admin
2015-07-24
112
问题
设f(x)在[一a,a](a>0)上有四阶连续的导数,
存在.
证明:存在ξ
1
,ξ
2
∈[一a,a],使得
选项
答案
上式两边积分得[*] 因为f
(4)
(x)在[一a,a]上为连续函数,所以f
(4)
(x)在[-a,a]上取到最大值M和最小值m,于是有mx
4
≤f
(4)
(ξ)x
4
≤Mx
4
, 两边在[一a,a]上积分得[*] 从而[*] 于是[*] 根据介值定理,存在ξ
1
∈[一a,a],使得f
(4)
(ξ
1
)=[*],或a
5
f
(4)
(ξ
1
)=[*] 再由积分中值定理,存在ξ
2
∈[一a,a],使得 a
5
f
(4)
(ξ
1
)=[*]=120af(ξ
2
),即a
4
f
(4)
(ξ
1
)=120f(ξ
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/q9w4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上二阶可导,f(1)=1,且,证明:存在ξ∈(0,1),使得f"(ξ)-2f’(ξ)+2=0.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
设f(x)二阶可导,,f(1)=1,证明:存在ξ∈(0,1),使得f"(、ξ)-f’(ξ)+1=0.
设f(x),g(x)在[n,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得f’(ζ)/f’(ξ)=ξ/η.
求函数f(x,y)=(x2+2x+y)ey的极值.
设xy=xf(z)+yg(z),且xf’(x)+yg’(z)≠0,其中z=z(x,y)是x,y的函数。证明:
设f(x)=f(x-π)+sinx,且当x∈[0,π]时,f(x)=x,求
设f(x)连续可导,f(0)=0,f’(0)≠0,F(x)=(x2-t2)f(t)dt,且当x→0时,F’(x)与xk为同阶无穷小,求k.
设f(x)为连续函数,且且当x→0时,与bxk为等价无穷小,其中常数b≠0,k为某正整数,求k与b的值及f(0),证明f(x)在x=0处可导并求f’(0).
随机试题
无痛性黄疸临床上常见于
下述关于急性炎症时白细胞渗出的描述中,错误的是
固涩剂适用于一切气、血、精、津液滑脱散失之证。()
在建设工程招投标活动中,招标文件应当规定一个适当的投标有效期。投标有效期的起算时间为()。
A注册会计师负责对B公司货币资金实施审计,针对B公司下列与现金相关的内部控制,A注册会计师认可的有()。
新安江是钱塘江的正源和上游,长373公里。()
中国人民政治协商会议全国委员会每届的任期是()。
毛泽东在湘赣边界发动秋收起义后,最先建立的革命根据地是:
It’sanicehouse:goodschools,goodneighborhood,decentcommute.Itevenlooksnice.Butsodoesthehousenextdoor.Andthe
Thesedays,peoplewhodo【C1】______workoftenreceivefarmoremoneythanpeoplewhoworkinoffices.Peoplewhoworkinoffices
最新回复
(
0
)