首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设n元线性方程组AX=b,其中 证明行列式|A|=(n+1)an.
[2008年] 设n元线性方程组AX=b,其中 证明行列式|A|=(n+1)an.
admin
2019-04-28
46
问题
[2008年] 设n元线性方程组AX=b,其中
证明行列式|A|=(n+1)a
n
.
选项
答案
证一 利用三对称行列式的结论证之.由命题2.1.1.2知 [*] 故|A|=|A|
T
=(n+1)a
n
. 证二 用数学归纳法证之. 当n=1时,|A|=|2a|=2a=(1+1)a
1
=2a,结论成立. 当n=2时,[*]结论也成立. 假设结论对n-2,n-1阶行列式成立,则|A|
n-2
=(n-1)a
n-2
,|A|
n-1
=na
n-1
.将|A|按第1行展开得到 |A|
n
=2a|A|
n-1
-a
2
|A|
n-2
=2-2a·na
n-1
-a
2
·(n-1)a
n-2
=(n+1)a
n
, 即结论对n阶行列式仍成立.由数学归纳法原理知,对任何正整数n,都有|A|=(n+1)a
n
. 证三 为方便计,令D
n
=|A|.将其按第1列展开得到D
n
=2aD
n-1
-a
2
D
n-2
, 即 D
n
-aD
n-1
=aD
n-1
-a
2
D
n-2
=a(D
n-1
-aD
n-2
)=a·a(D
n-2
-aD
n-3
) =a
2
(D
n-2
-aD
n-3
)=…=a
n-2
(D
2
-aD
1
)=a
n
, 故 D
n
=a
n
+aD
n-1
=a
n
+a(a
n-1
+aD
n-2
)=2a
n
+a
2
D
n-2
=… =(n-2)a
n
+a
n-2
D
2
=(n-2)a
n
+a
n-2
(a
2
+aD
1
) =(n-1)a
n
+a
n-1
D
1
=(n-1)a
n
+a
n-1
·2a=(n+1)a
n
. 证四 利用行列式性质化成三角行列式求之. [*] (注:命题2.1.1.2 设n阶三对称行列式[*]则 [*])
解析
转载请注明原文地址:https://kaotiyun.com/show/szJ4777K
0
考研数学三
相关试题推荐
求矩阵A=的特征值与特征向量.
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
没A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设线性相关,则a=______.
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
级数().
随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则()
设三阶矩阵A的特征值为λ1=-1,λ2=,λ3=其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=______.
(2016年)设函数y=f(x)在(一∞,+∞)内连续,其导函数的图象如下图所不,则()
随机试题
凝胶是橡胶中不溶解于溶剂的粒子。
温壶的作用是冲泡茶叶时不至于冷热悬殊。
治疗狂证痰热瘀结证,应首选()
生肌玉红膏功能活血祛腐,解毒止痛,润肤生肌收口,适用于( )。
业主根据工程的类型、规模和特点,确定参与投标企业的( ),并取得招标投标管理部门的认可。
招标人和中标人在签订合同的谈判中,为了防范货币贬值或者通货膨胀的风险,一般通过()约定风险承担方式。
下列规范性文件中,属于行政法规的是()。
某公司准备购买一套设备,原始投资额为800万元,预计建设期为1年,另需垫支流动资金20万元。投产后每年增加销售收入280万元,增加付现成本65万元。该项固定资产预计使用10年,按直线法提取折旧,预计残值为50万元。该公司拟按目前产权比率为2/5的目标结构来
区分国家的类型和本质的根据是()。
A、B、C、D、B
最新回复
(
0
)