首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知齐次线性方程组(I)与方程组(Ⅱ)同解,求a,b,c的值.
[2005年] 已知齐次线性方程组(I)与方程组(Ⅱ)同解,求a,b,c的值.
admin
2019-04-15
64
问题
[2005年] 已知齐次线性方程组(I)与方程组(Ⅱ)同解,求a,b,c的值.
选项
答案
解一 方程组(Ⅱ)的未知数的个数大于方程的个数,故必有无穷多解,因而必有基础解系.于是方程组(I)也有无穷多解,则方程组(I)的系数矩阵的秩必小于3.由此可确定a.而方程组(I)的系数矩阵 [*] 因秩(A)<3,从而a=2,且α=[1,-1,1]
T
为方程组(I)的一个基础解系.它当然也是方程组(Ⅱ)的解.将x
1
=-1,x
2
=-1,x
3
=1代入方程组(Ⅱ)可求得b=1,c=2或b=0,c=1. 当b=1,c=2时,方程组(Ⅱ)的系数矩阵化为[*]其基础解系也只含一个解向量α=[-1,-1,1]
T
,故方程组(I)与(Ⅱ)同解. 当b=0,c=1时,方程组(Ⅱ)的系数矩阵可化为[*]其基础解系含两个解向量,方程组(I)与(Ⅱ)的解不同,因而它们不同解. 因而当a=2,b=1,c=2时,两方程组同解,故所求的常数为a=2,b=1,c=2. 解二 因方程组(I)与(Ⅱ)同解,而方程组(Ⅱ)有无穷多组,故方程组(I)也有无穷多组解,则方程组(I)与(Ⅱ)的联立方程组 [*] 也必有无穷多组解.因而其系数矩阵A的秩必小于等于2,而用初等行变换化A为阶梯形,得到 [*] 由式①得到a=2,解式②与式③得到b(1-b)=0,故b=1或b=1.当b=1时,有c=2;当b=0时,c=1. 上面由方程组(Ⅲ)有无穷多解求出了参数a,b,c的取值,但这些取值能否保证两方程组同解,还要加以判别.事实上,当a=2,b=1,c=2时,方程组(I)的基础解系为[-1,-1,1]T.而对方程组(Ⅱ)的系数矩阵施行初等行变换,有 [*] 显然,它也有相同的基础解系[-1,-1,1]
T
,故方程组(I)与(Ⅱ)同解,但当b=0,c=1时,方程组(Ⅱ)的系数矩阵可由初等行变换化为 [*] 显然,其基础解系为α
1
=[0,1,0]
T
,α
2
=[-1,0,1]
T
与方程组(I)的不同,所以它们不同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/m7P4777K
0
考研数学三
相关试题推荐
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得
参数A取何值时,线性方程组有无数个解?求其通解.
设A=(A<0),且AX=0有非零解,则A*X=0的通解为______.
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
级数().
已知连续型随机变量X的概率密度为又知E(X)=0,求a,b的值,并写出分布函数F(x)。
设A,B为随机事件,0<P(A)<1,0<P(B)<1,则A,B相互独立的充要条件是()
设A、B为两个随机事件,且BA,则下列式子正确的是()
设随机变量X服从参数为1的指数分布,随机变量函数Y=1一e—X的分布函数为FY(y),则FY()=________。
设随机变量X服从参数为2的指数分布,令U=,求:(1)(U,V)的分布;(2)U,V的相关系数.
随机试题
在优待民警方面,“二十公”提出要实行()。
期望理论属于()
孔子认为“大同”、“小康”二者最本质的区别是()
一侧颅神经瘫痪及对侧上下肢瘫痪称为
绩效具有的特点有()。
企业自销的应税矿产品应交资源税,应计入()。
甲与乙共谋次日共同杀丙,但次日甲因腹泻未能前往犯罪地点,乙独自一人杀死丙。关于本案,下列哪些说法是正确的?()
Researchersareincreasinglyinterestedinmanipulatingtheenvironmentearlyinchildren’sliveswhentheyareperceivedtobe
数据库技术的根本目标是要解决数据的()。
(1)ちょうど(2)せっかく(3)いつも(4)ときどき(5)ちょっと(6)ところを(7)それにしても(8)なぜならば(9)しかも(10)なんとか
最新回复
(
0
)