首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知齐次线性方程组(I)与方程组(Ⅱ)同解,求a,b,c的值.
[2005年] 已知齐次线性方程组(I)与方程组(Ⅱ)同解,求a,b,c的值.
admin
2019-04-15
67
问题
[2005年] 已知齐次线性方程组(I)与方程组(Ⅱ)同解,求a,b,c的值.
选项
答案
解一 方程组(Ⅱ)的未知数的个数大于方程的个数,故必有无穷多解,因而必有基础解系.于是方程组(I)也有无穷多解,则方程组(I)的系数矩阵的秩必小于3.由此可确定a.而方程组(I)的系数矩阵 [*] 因秩(A)<3,从而a=2,且α=[1,-1,1]
T
为方程组(I)的一个基础解系.它当然也是方程组(Ⅱ)的解.将x
1
=-1,x
2
=-1,x
3
=1代入方程组(Ⅱ)可求得b=1,c=2或b=0,c=1. 当b=1,c=2时,方程组(Ⅱ)的系数矩阵化为[*]其基础解系也只含一个解向量α=[-1,-1,1]
T
,故方程组(I)与(Ⅱ)同解. 当b=0,c=1时,方程组(Ⅱ)的系数矩阵可化为[*]其基础解系含两个解向量,方程组(I)与(Ⅱ)的解不同,因而它们不同解. 因而当a=2,b=1,c=2时,两方程组同解,故所求的常数为a=2,b=1,c=2. 解二 因方程组(I)与(Ⅱ)同解,而方程组(Ⅱ)有无穷多组,故方程组(I)也有无穷多组解,则方程组(I)与(Ⅱ)的联立方程组 [*] 也必有无穷多组解.因而其系数矩阵A的秩必小于等于2,而用初等行变换化A为阶梯形,得到 [*] 由式①得到a=2,解式②与式③得到b(1-b)=0,故b=1或b=1.当b=1时,有c=2;当b=0时,c=1. 上面由方程组(Ⅲ)有无穷多解求出了参数a,b,c的取值,但这些取值能否保证两方程组同解,还要加以判别.事实上,当a=2,b=1,c=2时,方程组(I)的基础解系为[-1,-1,1]T.而对方程组(Ⅱ)的系数矩阵施行初等行变换,有 [*] 显然,它也有相同的基础解系[-1,-1,1]
T
,故方程组(I)与(Ⅱ)同解,但当b=0,c=1时,方程组(Ⅱ)的系数矩阵可由初等行变换化为 [*] 显然,其基础解系为α
1
=[0,1,0]
T
,α
2
=[-1,0,1]
T
与方程组(I)的不同,所以它们不同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/m7P4777K
0
考研数学三
相关试题推荐
求微分方程的通解.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A-2B|=______.
设正项级数un收敛,证明收敛,并说明反之不成立.
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则dxdy等于().
设X1,X2,…,Xn(n>2)为取自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi一,i=1,2,…,n。求:(Ⅰ)Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)Yi与Yn的协方差Cov(Y1,Yn)。
已知连续型随机变量X的概率密度为又知E(X)=0,求a,b的值,并写出分布函数F(x)。
设总体X服从正态分布N(0,σ2),,S2分别为容量是n的样本的均值和方差,则可以作出服从自由度为n一1的t分布的随机变量是()
设以X表示某一推销员一天花费在汽油上的款项(以美元计),以Y表示推销员一天所得的补贴(以美元计),已知X和Y的联合概率密度为(Ⅰ)求边缘概率密度fX(x),fY(y);(Ⅱ)求条件概率密度fY|X(y|x),fX|Y(x|y);(Ⅲ)求x=12时Y
设总体X的概率密度为其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量。
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().(B)nS2~χ2(n)
随机试题
下列行为中构成专利侵权的是()。
从造字法来看,“明”是_____字。
女,65岁,因头痛、右侧肢体无力7天入院。胸片:右肺可见圆形病灶,头部CT提示脑转移瘤,肿瘤周围脑水肿明显。本例瘤周水肿系
某研究者收集了2种疾病患者痰液内嗜酸性粒细胞的检查结果,整理成下表:若要比较2种疾病患者痰液内的嗜酸性粒细胞数是否有差别应选择
在下列关于财务管理“引导原则”的说法中,错误的是()。
关于老年人的权益,尤其是精神方面的保护,最近进行了立法,谈谈对这一问题的看法。
关于香港特别行政区的政府,说法正确的有()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
Whatistherelationshipbetweenthetwopersons?
A—thechiefcoachB—thechiefrefereeC—thedefenderD—centreforwardE—thesecon
最新回复
(
0
)