首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。 (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
admin
2019-05-08
98
问题
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f’(x)=A,则f
+
’
(0)存在,且f
+
’
(0)=A。
选项
答案
(Ⅰ)作辅助函数φ(x)=f(x)一f(a)一[*](x—a),易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 [*] 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即 [*] 所以f(b)—f(A)=f’(ξ)(b—a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在 [*] 故f
+
’
(0)存在,且f
+
’
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/2sJ4777K
0
考研数学三
相关试题推荐
微分方程y’’-y’-6y=(x+1)e-2x的特解形式为().
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则dxdy等于().
求.
设函数z=z(x,y)由方程x2+y2+z2=xyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)计算两个边缘概率密度;(Ⅱ)求条件概率密度fY|X(y|x=2);(Ⅲ)求条件概率P{Y≤1}X≤1}。
已知随机变量X与Y的相关系数为ρ且ρ≠0,Z=aX+b,则Y与Z的相关系数仍为ρ的充要条件是()
求函数f(x)=ln(1-x-2x2)的幂级数,并求出该幂级数的收敛域.
幂级数的收敛半径为____________.
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+ο(x3).
设总体X服从参数为P的几何分布,如果取得样本观测值为X1,X2,…,Xn,求参数p的矩估计值与最大似然估计值。
随机试题
多服久服对肝功能有一定损害的药物是
有较强局麻作用的镇咳药是
广播电视建筑应按其()等因素,分为一、二两类建筑物。
无代价抵偿货物办理进出口手续的期限为原进出口合同规定的索赔期内且不超过原货物进出口之日起3年,()
根据以下表格资料,回答问题。哪一年C省房地产开发投资增长额最多?()
①让世代居住在古城的居民全搬到城外,破坏了历史街区的真实与完整,不利于古城文化遗产和原生态文化的保护与传承②人口流动是一个长期自然发展的过程③既要保护古城历史文化遗存、历史街区等物质载体,也要传承风土人情、生活习俗等文化生态,实现传统文化生活和古城文明
最早写入人格尊严内容的我国宪法是()。
[2001年MBA真题]赞扬一个历史学家对于具体历史事件阐述的准确性,就如同是在赞扬一个建筑师在完成一项宏伟建筑物时使用了合格的水泥、钢筋和砖瓦,而不是赞扬一个建筑材料供应商提供了合格的水泥、钢筋和砖瓦。以下哪项最为恰当地概括了题干所要表达的意思?
某项目已进展到第3周,对项目前两周的实施情况总结如下:PV=3200,EV=3000元,AC=3300元。SPI和项目状态为(44)。
(1)在考生文件夹下建立一个文件名和表单名均为oneform的表单,该表单中包括两个标签(Label1和Label2)、一个选项按钮组(OptionGmup1)、一个组合框(Combol)和两个命令按钮(Command1和Command2),Label1和
最新回复
(
0
)