首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2013年)设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。 (I)求曲面∑的方程; (Ⅱ)求Ω的形心坐标。
(2013年)设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。 (I)求曲面∑的方程; (Ⅱ)求Ω的形心坐标。
admin
2018-03-11
72
问题
(2013年)设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。
(I)求曲面∑的方程;
(Ⅱ)求Ω的形心坐标。
选项
答案
[*] 任意点M(x,y,z)∈∑,对应于L上的点M
0
(z
0
,y
0
,z),x
2
+y
2
=x
0
2
+y
0
2
,且z=z。 由[*]得∑:x
2
+y
2
=(1一z)
2
+z
2
,即 ∑:x
2
+y
2
=2z
2
一2z+1。 (Ⅱ)显然[*] [*] 其中D
xy
:x
2
+y
2
≤2z
2
一2z+1。 所以[*]因此形心坐标[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/svr4777K
0
考研数学一
相关试题推荐
设向量组(I)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1,β
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
求方程的通解.
若P(x,y),Q(x,y)在单连通域G内有一阶连续偏导数,且对G内任意简单闭曲线L有,则③曲线积分与路径无关;④P(x,y)dx+Q(x,y)dy是某个函数μ(x,y)的全微分。这四种说法中正确的是()。
设有正项级数是它的部分和(1)证明收敛;(2)判断级数是条件收敛还是绝对收敛,并给予证明.
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且
设有微分方程y’+p(x)y=x2,其中,求在(一∞,+∞)内的连续函数y=f(x),使其满足所给的微分方程,且满足条件y(0)=2.
(1999年)试证:当x>0时,(x2一1)lnx≥(x—1)2.
(2010年)设m,n均是正整数,则反常积分的收敛性
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式验证
随机试题
检查管型物质最适宜标本为
海金沙功能利尿通淋,入汤剂宜包煎,其主治证为
机械设备采用隔振机座,对建筑物内防止下列哪种频率的噪声干扰较为有效?(2004,14)
《中华人民共和国环境影响评价法》对建设单位未依法报批建设项目环境影响评价文件,或者未依法重新报批或报请重新审核环境影响评价文件,擅自开工建设的建设项目规定有( )。
(2016·安徽)错觉现象的存在正是说明了人类无法客观地反映世界。()
法与政治的关系是()。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
在分布数据规划中存在多种数据分布形式,并可能产生数据同步问题,以下叨F种数据不会存在同步问题?()
Thedevelopmentofsocietyseeminglyendowspeoplewiththerighttosavorthewholeworld,butsomepeopleclaimthattourismw
WhydidmarinesgatheronMonday?
最新回复
(
0
)