首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P—1AP; ③AT; α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P—1AP; ③AT; α肯定是其特征向量的矩阵个数为( )
admin
2020-03-24
98
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
;
②P
—1
AP;
③A
T
;
α肯定是其特征向量的矩阵个数为( )
选项
A、1
B、2
C、3
D、4
答案
B
解析
由Aα=Aα,α≠0,有A
2
α=A(Aα)=λAα=A
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
又
A属于特征值1—
λ的特征向量。
关于②和③则不一定成立。这是因为
(P
—1
AP)(P
—1
α)=P
—1
Aα=λP
—1
α,
按定义,矩阵P
—1
AP的特征向量是P
—1
α。因为P
—1
α与α不一定共线,因此α不一定是P
—1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE—A)x=0与(λE一A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量。所以应选B。
转载请注明原文地址:https://kaotiyun.com/show/qEx4777K
0
考研数学三
相关试题推荐
f(x)在[一1,1]上连续,则x=0是函数g(x)=的().
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则()
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是()
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1。正确命题的数量为()
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设y(x)是微分方程y’’+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
已知随机变量X~N(2,9),Y服从参数为0.5的指数分布,且ρXY=—0.25,则D(2X—3Y)=________。
设X为总体,E(X)=μ,D(X)=σ2,X1,X2,…,Xn为来自总体的简单随机样本,S2=,则E(S2)=________.
设A、B、A+B、A-1+B-1均为n阶可逆阵。则(A-1+B-1)-1=【】
随机试题
通过不断强化逐渐趋近目标的反应,来形成某种较复杂的行为称为()。
图中交通警察的手势为什么信号?
外阴上皮内瘤变最有可能的病因为
露天矿山的辅助生产环节不包括()。
对于一手个人住房贷款而言,较为普遍的贷款营销方式是银行与房地产开发商合作的方式,这种合作方式是指房地产开发商与贷款银行共同签订“商品房销售贷款合作协议”,由银行向购买该开发商房屋的购房者提供个人住房贷款,借款人用所购房屋作抵押,在借款人购买的房屋没有办好抵
现行的增值税实行的是价内税,因此产品成本中包括外购投入物所支付的进项税。()
动机产生的内在条件是()。
好意施惠是指当事人之间无意设定法律上的权利义务关系,而由当事人一方基于良好的道德风尚实施的使另一方受恩惠的关系。根据上述定义,下列不属于好意施惠关系的是:
基于以下题干:陈教授:中世纪初欧洲与东亚之间没有贸易往来,因为在现存的档案中找不到这方面的任何文字记录。李研究员:您的论证与这样一个论证类似:传说中的喜马拉雅雪人是不存在的,因为从来没有人作证亲眼看到这种雪人。这一论证的问题在于:有人看
在下列选项中属于Java语言的代码安全检测机制的是()。
最新回复
(
0
)