首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2),且P{X=x2}=,P{Y=y1|X=x2}=,P{X=x1|Y=y1}=,试求: (Ⅰ)二维随机变量(X,Y)的联合概率分布; (Ⅱ)条件概率P{Y=yj|X=x1},j=1,2.
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2),且P{X=x2}=,P{Y=y1|X=x2}=,P{X=x1|Y=y1}=,试求: (Ⅰ)二维随机变量(X,Y)的联合概率分布; (Ⅱ)条件概率P{Y=yj|X=x1},j=1,2.
admin
2019-06-25
53
问题
设离散型二维随机变量(X,Y)的取值为(x
i
,y
j
)(i,j=1,2),且P{X=x
2
}=
,P{Y=y
1
|X=x
2
}=
,P{X=x
1
|Y=y
1
}=
,试求:
(Ⅰ)二维随机变量(X,Y)的联合概率分布;
(Ⅱ)条件概率P{Y=y
j
|X=x
1
},j=1,2.
选项
答案
依题意,随机变量X与Y的可能取值分别为x
1
,x
2
与y
1
,y
2
,且 P{X=x
1
}=1一P{X=x
2
}=[*] 又题设P{X=x
1
|Y=y
1
}=[*] 于是有P{x=x
1
|Y=y
1
}=P{x=x
1
}, 即事件{X=x
1
}与事件{Y=y
1
}相互独立,因而{X=x
1
}的对立事件{X=x
2
}与{Y=y
1
}独立,且{X=x
1
}与{Y=y
1
}的对立事件{Y=y
2
}独立;{X=x
2
}与{Y=y
2
}独立,即X与Y相互独立. (Ⅰ)因X与Y独立,所以有P{Y=y
1
}=P|Y=y
1
|X=x
2
}=[*] P{Y=y
2
}=1一P{Y=y
1
}=[*] P{X=x
1
,Y=y
1
}=P{X=x
1
}P{Y=y
1
=[*] P{X=x
1
,Y=y
2
}=P{X=x
1
}P{Y=y
2
}=[*] P{X=x
2
,Y=y
1
}=P{X=x
2
}P{Y=y
1
}=[*] P{X=x
2
,Y=y
2
}=P{X=x
2
}P{Y=y
2
}=[*] 或P{X=x
2
,Y=y
2
}=[*] 于是(X,Y)的联合概率分布为 [*] (Ⅱ)因X与Y独立,所以P{Y=y
j
|X=x
1
}=P{y=y
j
},j=1,2,于是有P{Y=y
1
|X=x
1
}=P{y=y
1
}=[*] P{Y=y
2
|X=x
1
}=P{Y=y
2
}=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qLJ4777K
0
考研数学三
相关试题推荐
设bn=1+的收敛半径、收敛区间;在收敛区间端点处,讨论对应的数项级数是发散还是收敛?如果是收敛,讨论是条件收敛还是绝对收敛?
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效.(Ⅰ)求一只器件在时间T0未失效的概率;(Ⅱ)求λ的最大似然估计
已知随机变量X与Y的部分联合分布列、边缘分布列如下表,且求:(Ⅰ)a,b,c,d;(Ⅱ)P{min{X,Y}<1};(Ⅲ)Cov(X,Y).
函数f(x)=的间断点的个数为___________.
已知y=u(x)x是微分方程(y2+4x2)的解,则在初始条件y|x=2=0下,上述微分方程的特解是y=___________.
求幂级数的和函数.
曲线y=x4e-x2(x≥0)与x轴围成的区域面积为____________.
把写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+ο(x3).
设f(x)是连续函数.求初值问题的解,其中a>0;
随机试题
简述出版物发行质量规范管理的工作要求。
女性。25岁。有低热、乏力、四肢关节肌肉疼痛2月。查体:T38℃,颧部红色片状斑疹,肝肋下一指、脾肋下二指,双手掌指关节、各指间关节、双膝关节肿胀、压痛.双下肢凹陷性水肿。化验:ESR110mm/h、C3降低尿蛋白(++)、血压150/90mmHg。
移植抗原是指
对ARDS的诊断和病情判断有重要意义的检查是( )。
建设单位要建立和完善水环境监测制度,对厂区及周边地下水进行监测,监测点布置应遵循的原则包括()。
()的主要目是保持各级各类规划顺序原则的一致性,保持政策的有效性和连续性。
全站仪主要由组成。()
发现学习的首倡者是()。
2,3,6,15,()
下列关于栈叙述正确的是()。
最新回复
(
0
)