首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是 ( )
n维向量组α1,α2,…,αs(3≤s≤n)线性无关的充要条件是 ( )
admin
2018-09-20
73
问题
n维向量组α
1
,α
2
,…,α
s
(3≤s≤n)线性无关的充要条件是 ( )
选项
A、存在一组全为零的数k
1
,k
2
,…,k
s
,使k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
B、α
1
,α
2
,…,α
s
中任意两个向量都线性无关
C、α
1
,α
2
,…,α
s
中任意一个向量都不能由其余向量线性表出
D、存在一组不全为零的数k
1
,k
2
,…,k
s
,使k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0
答案
C
解析
可用反证法证明.必要性:假设存在一个向量,如α
s
可由α
1
,α
2
,…,α
s-1
线性表出,则α
1
,α
2
,…,α
s
线性相关,这和已知矛盾,故任一向量均不能由其余向量线性表出.充分性:假设α
1
,α
2
,…,α
s
线性相关
至少存在一个向量可由其余向量线性表出,这和已知矛盾,故α
1
,α
2
,…,α
s
线性无关.(A)对任何向量组都有0α
1
+0α
2
+…+0α
s
=0的结论;(B)必要但不充分,如α
1
=[0,1,0]
T
,α
2
=[1,1,0]
T
,α
3
=[1,0,0]
T
中任意两个向量线性无关,但α
1
,α
2
,α
3
线性相关;(D)必要但不充分,如上例α
1
+α
2
+α
3
≠0,但α
1
,α
2
,α
3
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/qNW4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,若Ak一1α≠0,而Akα=0.证明:向量组α,Aα,…,Akk一1α线性无关.
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X一E(X)|≥2)≤________.
设A,B,C,D都是n阶矩阵,r(C4+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设随机变量X的密度函数为f(x)=求常数A;
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
利用变换x=arctant将方程cos4x+cos2x(2一sin2x)+y=tanx化为y关于t的方程,并求原方程的通解.
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是________.
差分方程yx+1一的通解为________.
微分方程xy’+y=0满足条件y(1)=1的特解为y=________。
随机试题
肾交感神经节后纤维释放的去甲肾上腺素可调节
代谢性碱中毒的代偿中,哪项是恰当的
腺体鳞状上皮化生后发生恶性变,所形成的恶性瘤称为
最适于地面消毒皮肤
上市公司及其控股股东或实际控制人最近36个月内存在未履行向投资者作出的公开承诺的行为,不得公开发行证券。()
定势是一种消极的心理活动准备状态。()
外交家考虑问题显然不如法学家那么___________,也不如经济学家那样“___________”,能否就某一议题达成共识完全取决于国内政治力量的妥协和谈判桌上的临场发挥。至于最后谈判文本对本国福利的影响以及如何从法律上得以保证文本的执行,外交家们保留了
简述新闻本源和来源的区别。(中南财经政法大学,2008年)
Ibecameinterestedinwritingatanearlyage.Sowhenmyfourth-gradeteachertoldmeabouta【C1】________writer’sconference
Jason:Hi,Jane.Doyouhaveanychange?Ihavetomakeacallonthepayphone.Jane:______
最新回复
(
0
)