首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
admin
2019-07-19
35
问题
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫
0
k
f(x)dx≥k∫
0
1
f(x)dx.
选项
答案
方法一 ∫
0
k
f(x)dx-k∫
0
1
f(x)dx=∫
0
k
f(x)dx-k[∫
0
k
f(x)dx+∫
k
1
f(x)dx] =(1一k)∫
0
k
f(x)dx—k∫
k
1
f(x)dx=k(1一k)[f(ξ
1
)一f(ξ
2
)] 其中ξ
1
∈[0,k],ξ
2
∈[k,1],因为0<k<1且f(x)单调减少, 所以∫
0
k
f(x)dx—k∫
0
1
f(x)dx=k(1一k)[f(ξ
1
)一f(ξ
2
)]≥0,故∫
0
k
f(x)dx≥k∫
0
1
f(x)dx. 方法二 ∫
0
k
f(x)dx[*]k∫
0
1
f(kt)dt=k∫
0
1
f(kx)dx,当x∈[0.1]时,因为0<k<1,所以kx≤x, 又因为f(x)单调减少,所以f(kx)≥f(x),两边积分得∫
0
1
f(kx)dx≥∫
0
1
f(x)dx, 故k∫
0
1
f(kx)dx≥k∫
0
1
f(x)dx,即∫
0
k
f(x)dx≥k∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/qNc4777K
0
考研数学一
相关试题推荐
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以∞为周期的特解,并求此特解,其中k≠0为常数.
过点P(2,0,3)且与直线垂直的平面的方程是()
设函数f(x)满足关系式f"(x)+[f’(x)]2=x,且f’(0)=0,则
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(一a)+F(a)与1的大小关系.
设随机变量X与Y相互独立且都服从标准正态分布N(0,1),则()
设f(x)为(一∞,+∞)上的连续奇函数,且单调增加,F(x)=∫0x(2t一x)f(x一t)dt,则F(x)是
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在η∈(a,b),使得f’’(η)一3f’(η)+2f(η)=0
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
计算其中L是平面x+y+z=2与柱面|x|+|y|=1的交线,从z轴正向看去,L为逆时针方向。
设随机变量X与Y相互独立,且X服从参数为p的几何分布,即P{X=m}=pqm-1,m=1,2,…,0<p<1,q=1一p,Y服从标准正态分布N(0,1).求:(Ⅰ)U=X+Y的分布函数;(Ⅱ)V=XY的分布函数.
随机试题
具有四级结构的蛋白质特征是
血浆中起关键作用的缓冲对是
疾病监测采用的方法属于
关于一般抹灰施工及基层处理的说法,错误的是()。
我国雨凇最多的地方是()。
材料:刘某是一名初中二年级的学生,他特别喜欢罗纳尔多,于是把头发剃成足球式的形状。第二天来学校上课,刚走进教室,被老师看见,老师便对他说:“你的发式太怪了,把头发再剪剪,恢复正常了再来上课,顺便让你爸爸妈妈来学校一趟。”刘某回家后,将这件事告知家人,第二
一个人应该活得是自己并且干净顾城人的生命里有一种能量,它使你不安宁。说它是欲望也行,幻想也行,妄想也行,总之它不可能停下来,它需要一
A、 B、 C、 D、 A图形中的外层四边形顺时针旋转45。、中间四边形顺时针旋转90。、内部四边形逆时针旋转45。,得到后一个图形。由此应选择A。
根据下述材料。写一篇700字左右的论说文,题目自拟。中心是令人向往的地方,处于中心地带往往有诸多便利、机会和认同。当然也有人在中心地带迷失,最终边缘化。边缘是让人平静的地方,它的质朴和别样让生活其中的人受益良多,甚至还吸引中心的人们探寻它的魅力。
Weliveinatimewhen,morethaneverbeforeinhistory,peoplearemovingabout.
最新回复
(
0
)