首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)一3f’(η)+2f(η)=0
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)一3f’(η)+2f(η)=0
admin
2018-11-22
25
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在η∈(a,b),使得f
’’
(η)一3f
’
(η)+2f(η)=0
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g
’
(η
1
)=g
’
(η
2
)=0, 而g
’
(x)=e
-x
[f
’
(x)一f(x)]且e
-x
≠0,所以f
’
(η
1
)一f(η
1
)=0,f
’
(η
2
)一f(η
2
)=0. 令φ(x)=e
-2x
[f
’
(x)一f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ
’
(η)=0, 而φ
’
(x)=e
-2x
[f
’’
(x)一3f
’
(x)+2f(x)]且e
-2x
≠0, 所以f
’’
(η)-3f
’
(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/GzM4777K
0
考研数学一
相关试题推荐
设α1,α2,α3是三维向量空间R3的一组基,则由基α1,到基α1+α2,α2+α3,α3+α1的过渡矩阵为()
设A=(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Ax=b有无穷多解,并求其通解。
设幂级数的收敛半径为3,则幂级数的收敛区间为_______。
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基。
设(X,Y)的联合密度函数为f(x,y)=(Ⅰ)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当X=x(0≤x≤)下Y的条件密度函数fY|X(y|x).
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为()
设三阶矩阵A=,若A的伴随矩阵的秩等于1,则必有
随机试题
在24小时尿标本中加入浓盐酸,是用于何种检测
莎士比亚剧作《罗密欧与朱丽叶》是()
最常见的眼睑恶性肿瘤是
已完成股权分置改革的公司,按股份流通受限与否,可分为()。
下列选项中,属于法律关系客体的是()。
某地发生矿难后,一个遇难者的爷爷拉着干部说:“为什么死的是我孙子,你们这些当官的怎么不去死?”其他遇难者家属情绪也很激动。请问如果你是这名干部,该怎么处理?
A、 B、 C、 D、 D
Whatdoesgreenbuildingrefertonowadays?Whyaresomepeoplenotsoenthusiasticaboutgreenbuildings?
患者是名25岁的男性,单身,博士研究生。他说自己难以完成其博士的学业,还说自己对异性非常感兴趣。他认为自己的论文课题会极大地提高该专业领域的学术水平,并使自己成名,但他难以完成论文的第三章。他的导师应该为他没有取得进展负责任,自己应该得到更多的帮助,他的导
ThedefactostandardApplicationProgramInterface(API)forTCP/IPapplicationsisthet•sockets”interface.AlthoughthisAPlwa
最新回复
(
0
)