首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)一3f’(η)+2f(η)=0
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)一3f’(η)+2f(η)=0
admin
2018-11-22
33
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在η∈(a,b),使得f
’’
(η)一3f
’
(η)+2f(η)=0
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g
’
(η
1
)=g
’
(η
2
)=0, 而g
’
(x)=e
-x
[f
’
(x)一f(x)]且e
-x
≠0,所以f
’
(η
1
)一f(η
1
)=0,f
’
(η
2
)一f(η
2
)=0. 令φ(x)=e
-2x
[f
’
(x)一f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ
’
(η)=0, 而φ
’
(x)=e
-2x
[f
’’
(x)一3f
’
(x)+2f(x)]且e
-2x
≠0, 所以f
’’
(η)-3f
’
(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/GzM4777K
0
考研数学一
相关试题推荐
A为三阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量;(Ⅱ)求矩阵A。
证明:(Ⅰ)对任意正整数n,都有成立;(Ⅱ)设,证明{an}收敛。
设二维随机变量(X,Y)在区域G={(x,y)|1≤x+y≤2,0≤y≤1}上服从均匀分布。试求:(Ⅰ)(X,Y)的边缘概率密度fX(x)和fY(y);(Ⅱ)Z=X+Y的概率密度fZ(z)。
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
从R2的基α1=的过渡矩阵为________。
设f(x)在闭区间[a,b]上可导f(a)=,则()
设f(x)为[-a,a]上的连续偶函数,且f(x)>0,令F(x)=(Ⅰ)证明F’(x)单调增加;(Ⅱ)当x取何值时,F(x)取最小值;(Ⅲ)当F(x)的最小值为f(a)-a2-1时,求函数f(x)。
证明:在右半平面x>0上,曲线积分∫L与路径无关,并求一个二元函数u=u(x,y),使得du=
计算xydxdy,其中D是由y=一x及y=所围成的区域。
已知等边三角形△ABC的边长为1,且,则a.b+b.c+c.a=()
随机试题
Globalwarmingiscausingmorethan300,000deathsandabout$125billionineconomiclosseseachyear,accordingtoareportby
在腹前壁上第4腰椎的体表定位点是
乙为水泥厂,甲为水泥销售公司。甲、乙订立一购销合同,约定乙于6月1日前送水泥1000吨给甲;甲支付定金10万元给乙。后乙于6月2日将1000吨水泥运至甲处。甲以乙违约(迟延履行1天)为由,要求乙双倍返还定金20万元。以下说法正确的是:
下列术语中卖方不负责办理出口手续及支付相关费用的是()。
可转换公司债券享受转换特权,在转换前和转换后的形式分别为()。
根据企业所得税相关规定,企业提供劳务完工进度的确定,可以选用的方法有()。
Whodesignedthefirsthelicopter?Who【C1】______themostfamouspicturesintheworld?Whoknewmoreaboutthehumanbodythanm
关于因特网的域名系统,以下哪种说法是错误的?______。
Whichwordcantaketheplaceoftheunderlinedword"fervency"inparagraph1?Theunusuallysurprisingwaythathescoredgoa
A、TomeetCharley.B、Toworkinhisoffice.C、Togotohospital.D、Toattendameeting.DM:ThisisCharleyspeaking.Couldyou
最新回复
(
0
)