首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)一3f’(η)+2f(η)=0
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f’’(η)一3f’(η)+2f(η)=0
admin
2018-11-22
52
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在η∈(a,b),使得f
’’
(η)一3f
’
(η)+2f(η)=0
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0, 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g
’
(η
1
)=g
’
(η
2
)=0, 而g
’
(x)=e
-x
[f
’
(x)一f(x)]且e
-x
≠0,所以f
’
(η
1
)一f(η
1
)=0,f
’
(η
2
)一f(η
2
)=0. 令φ(x)=e
-2x
[f
’
(x)一f(x)],φ(η
1
)=φ(η
2
)=0, 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得φ
’
(η)=0, 而φ
’
(x)=e
-2x
[f
’’
(x)一3f
’
(x)+2f(x)]且e
-2x
≠0, 所以f
’’
(η)-3f
’
(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/GzM4777K
0
考研数学一
相关试题推荐
设A=有二重特征根,则a=_______。
求幂级数的收敛区间,并讨论该区间端点处的收敛性。
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f’+(0)
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
设A=,A*是A的伴随矩阵,则A*x=0的通解是________。
设总体X的密度函数为f(x;θ)=(一∞<x<+∞),其中θ>0为未知参数,(X1,X2,…,Xn)为来自总体X的简单随机样本,求参数θ的矩估计量和极大似然估计量.
计算曲面积分I=2x3dydz+2y3dzdx+3(x2—1)dxdy,其中三为曲面z=1一x2一y2(z≥)的上侧.
设总体X~N(0,1),X1,X2,X3,X4为来自总体的简单随机样本,则服从的分布为___________.
设f(x)在(一∞,+∞)连续,在点x=0处可导,且f(0)=0,令(I)试求A的值,使F(x)在(一∞,+∞)上连续;(II)求F’(x)并讨论其连续性.
等边三角形ROT(如图)的边长为1,在三角形内随机地取点Q(X,Y)(意指随机点(X,Y)在三角形ROT内均匀分布).求:(Ⅰ)点Q到底边0T的距离的概率密度;(Ⅲ)fX|Y(x|y).
随机试题
简述健康个性的标准。
在偏光镜下可以观察到的由于晶体脱矿而形成的孔隙,在暗层中所占的比例为
环氧树脂涂层属于什么涂料?
W自来水厂建设项目(以下简称W项目)使用国债资金,在确定招标方案时,招标人决定W项目自行招标,并采取邀请招标方式选择施工队伍,评标方法采用经评审的最低投标价法,招标人授权评标委员会直接确定中标人。在招标过程中发生了如下事件。事件1:本次招标向A、
The director gave me a better offer than( ).
()是我国各行各业人员共同的道德规范。
采用重力式货架拣选具有许多优点。例如,节约仓库面积、入库与出库分置、货架两侧互不干扰、()。
“近朱者赤,近墨者黑”是一种典型的()观点。
“印刻”现象是习性学家观察到的现象,这支持了动机的哪种理论?()
Oneofthebasiccharacteristicsofcapitalismistheprivateownershipofthemajormeansofproduction—capital.Theownership
最新回复
(
0
)