首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2020-03-10
54
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
因为A有三个不同的特征值λ
1
,λ
2
,λ
3
所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3.若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
;若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/qkD4777K
0
考研数学三
相关试题推荐
设矩阵A=,则行列式|3(A*)—1一A|=__________.
设3阶对称阵A的特征值为λ1=1,λ2=-1,λ3=0;对应λ1,λ2的特征向量依次为p1=,求A.
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn)
试用行列式的性质证明:(a×b)×c=(b×c)×a=(c×a)×b
设连续型随机变量X的密度函数为f(x),分布函数为F(x).如果随机变量X与-X分布函数相同,则().
设函数f(x)在区间(-δ,δ)内有定义,若当x∈(-δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设A和B是任意两个概率不为零的互不相容事件,则下列结论肯定正确的是()
设函数f(x)在区间[1,+∞)上连续,若曲线y=f(x)与直线x=1,x=t(t>1)及x轴所围平面图形绕x轴旋转一周所得旋转体体积为,求f(x)满足的微分方程,并求满足初值的解。
判断下列结论是否正确?为什么?若存在x0的一个邻域(x0-δ,x0+δ,使得x∈(x0-δ,x0+δ)时f(x)=g(x),则f(x)与g(x)在x0处有相同的可导性.若可导,则f’(x0)=g’(x0).
随机试题
组织
下列不属于巴比妥类药物中毒机制的是
垄断竞争市场的特点有()。
要约和要约邀请的主要区别包括()。
在我国,政府的最高限价行为不会导致()。
虽然某些防火建筑的主要部分都是由耐火材料建成,但却可通过门厅和其他通道里的易燃材料使火势蔓延以至于完全被摧毁。这些建筑甚至可能由于金属梁、柱的坍倒而遭到严重的结构破坏。这段话主要支持了这样一种论点,即某些防火建筑()。
“诗不可译”的说法广为流传。但是,诗歌的创作与研究,需要仰仗不同语种诗歌的交流与碰撞。所以,总有一些人“________”,默默地从事着诗歌翻译的探索工作。填入画横线部分最恰当的一项是:
设连续函数z=f(x,y)满足=0,则dz|(0,1)=________。
Usersonthe172.17.22.0networkcannotreachtheserverlocatedonthe172.31.5.0network.Thenetworkadministratorconnectedt
It’sanindustrybuiltpurely【C1】______image,buttheactors,actressesandsingerswhoturntoitforhelpliketokeepita
最新回复
(
0
)