首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a>0,b>0,a≠b,证明下列不等式: (Ⅰ)ap+bp>21-p(a+b)p(p>1); (Ⅱ)ap+6p<21-p(a+b)p(0<p<1).
设a>0,b>0,a≠b,证明下列不等式: (Ⅰ)ap+bp>21-p(a+b)p(p>1); (Ⅱ)ap+6p<21-p(a+b)p(0<p<1).
admin
2019-08-12
94
问题
设a>0,b>0,a≠b,证明下列不等式:
(Ⅰ)a
p
+b
p
>2
1-p
(a+b)
p
(p>1);
(Ⅱ)a
p
+6
p
<2
1-p
(a+b)
p
(0<p<1).
选项
答案
将a
p
+b
p
>2
1-p
(a+b)
p
改写成[*].考察函数f(x)=x
p
,x>0,则 f’(x)=px
p-1
, f"(x)=p(p-1)x
p-2
. (Ⅰ)若p>1,则f"(x)>0([*]x>0),f(x)在(0,+∞)为凹函数,其中t=[*]得:[*]a>0,b>0,a≠b,有 [*] (Ⅱ)若0<p<1,则f"(x)<0([*]x>0),f(x)在(0,+∞)为凸函数,其中[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/qlN4777K
0
考研数学二
相关试题推荐
计算二重积分(x+y)3dxdy,其中D由曲线x==0及x一=0围成。
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设f(x)是连续函数.求初值问题,的解,其中a>0;
设,B=U-1A*U.求B+2E的特征值和特征向量.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点M,使得L在M点处的法
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为__
设函数y=f(x)由参数方程所确定,其中φ(t)具有二阶导数,且已知证明:函数φ(t)满足方程
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设数列则当n→∞时,xn是
随机试题
可以将模块设置在配电柜内。()
按_________特点划分支付系统类型,通常分为同城、异地两类支付系统。()
关于儿科疾病治疗的描述,正确的是
肺炎球菌肺炎可出现的并发症有
异位内膜最易侵犯的部位是
A.五倍子B.金银花C.黄连D.熊胆E.当归主要成分为单宁酸的是()
[2003年第2题]施工中所必需的生产、生活用的临时设施费应计入下列哪项费用中?
深化垄断行业改革,坚持()原则。
某进出境船舶由于暴雨而被迫在未设立海关的港口停靠,事先未向海关申报,事后也未向海关报告,海关查问时,该船舶负责人也未能提供正当理由。这种情况,海关可对其处以5万元以上的罚款。()
虚拟企业是当市场出现新机遇时,具有不同资源与优势的企业为了共同开拓市场,共同对付其他的竞争者而组织的,建立在信息网络基础上的共享技术与信息、分担费用、联合开发的、互利的企业联盟体。根据上述定义,下列属于虚拟企业的是:
最新回复
(
0
)