首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设b>a>0,f(x)在[a,b]上连续,单调递增,且f(x) >0,证明:存在ξ∈(a,b)使得a2f(b)+b2f(a)=2ξ2f(ξ).
设b>a>0,f(x)在[a,b]上连续,单调递增,且f(x) >0,证明:存在ξ∈(a,b)使得a2f(b)+b2f(a)=2ξ2f(ξ).
admin
2017-05-31
46
问题
设b>a>0,f(x)在[a,b]上连续,单调递增,且f(x) >0,证明:存在ξ∈(a,b)使得a
2
f(b)+b
2
f(a)=2ξ
2
f(ξ).
选项
答案
令F(x)=2x
2
f(x)一a
2
f(b)一b
2
f(a).显然F(x)在[a,b]上连续且F(a)=a
2
[f(a)一f(b)]+ f(a) (a
2
一b
2
)<0, F (b)=f(b) (b
2
一a
2
)+b
2
[f(b)一 f(a)]>0,由零点定理,至少存在一个点ξ∈[a,b]使得F(ξ)=0,即 a
2
f(b)+b
2
f(a)=2ξ
2
f(ξ).
解析
作辅助函数F(x)=2x
2
f(x)-a
2
f(b)一b
2
f(a),F(x)在[a,b]上用零点定理.
转载请注明原文地址:https://kaotiyun.com/show/qlu4777K
0
考研数学一
相关试题推荐
[*]
A、 B、 C、 D、 C
哪项是偶函数
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
在电炉上安装了四个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度to,电炉就断电,以E表示事件“电炉断电”,设T(1)≤T(2)≤T(3)≤T(4)为四个温控器显示的按递增顺序排列的温度值,则事件E等于()
已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0,试证存在ξ,η∈(a,b),使得
(2005年试题,19)设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.求函数φ(y)的表达式.
随机试题
某抽油机井油层中部深度为1200m,泵挂深度为980m,动液面深度为500m,该井的沉没度为()m。
完全在线粒体内完成的反应是
既往史包括
肺肾阴虚所致经行吐衄的治法是
在现代城市规划科学的主要理论中,哪个城市不属于城市分散发展模式理论?
我国公民李某于2012年10月1日在某市市区购买一套普通住房。面积80平方米,成交价格每平方米5000元,该住房是李某唯一一套住房。2012年12月28日由于李某调到外地工作,从2013年1月1日起,李某按市场价格将该房出租给张某用于居住,每月收取租金60
事业单位的年度考核一般在每年年末或第二年年初进行。年度考核的基础是()
下列合同中,当事人不能行使留置权的是()。
中共二大宣言规定了中国共产党的最低纲领,其基本内容是
Lodger:I’mterriblysorrythatIbrokeyourpreciousvase.I’llpayforit.Landlady:______
最新回复
(
0
)