首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
admin
2013-01-07
87
问题
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x
2
fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
选项
答案
若最大值M>0,设f(xM)=M,xM∈(a,b). 则由费马定理得fˊ(xM)=0,又f(xM)为极大值. 则f〞(xM)<0,另由题设得 f〞(xM)=-x
2Mf
-
(xM)+2f(xM)
=2f(xM)=2M>0. (与f〞(xM)<0矛盾)故最大值M≤0. 同理可证最小值也必为0,所以f(x)在[a,b]上的最大值M和最小值m都必为零. 因为f(a)=f(b)=0,则f(x)在[a,b]上恒为零.
解析
转载请注明原文地址:https://kaotiyun.com/show/SQ54777K
0
考研数学一
相关试题推荐
计算二重积分|x2+y2-1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1}。
(2007年)设线性方程组与方程χ1+2χ2+χ3=a-1②有公共解,求a的值及所有公共解.
(1990年)求曲线y=(χ>0)的拐点.
[2010年]函数y=ln(1—2x)在x=0处的n阶导数y(n)(0)=_________.
[2015年]设矩阵A=相似于矩阵B=求a,b的值;
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2ax1x3+2ax2x3经可逆线性变换22得g(y1,y2,y3)=y12+y22+4y32+2y1y2.求可逆矩阵P.
设函数y=f(x)在区间[-1,3]上的图形如右图所示,则函数F(x)=∫0xf(t)dt的图形为()
设函数f(x)在[0,1]上f"(x)>0,则f’(1)、f’(0)、f(1)一f(0)或f(0)一f(1)的大小顺序是
求下列极限:
设单位质点在水平面内作直线运动,初速度v|t=0=v0,已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
随机试题
以下属于公理性原则的是:
某甲是国务院证券管理委员会的_工作人员,违反有关上市申请的审批规定,擅自批准不符合上市资格的公司通过申请,这个疏忽导致使许多股民遭受重大损失,甲没有从中谋取任何个人利益。甲的行为构成:()
我国招投标应当遵循的原则是()。
某企业拟开发一种新产品,有四种设计方案可供选择,见下表。根据以上资料,回答下列问题:根据等概率原则,每种状态的概率为1/3,则该企业应该选择方案()。
()可以引用和编辑文本、图像、声音、动画和视频等多种媒体素材。
观察下面这幅漫画。请你对此谈谈看法。
A、 B、 C、 D、 A原数列可化为:分母为差后等比数列,故下一项为36。分子为三级等差数列,故下一项为8+4+18=30。故空缺项应为。
以下哪部作品属于60年代的“黑色幽默”文学,用夸张、超现实的手法将欢乐与痛苦、可笑与可怖、柔情与残酷、荒唐古怪与一本正经糅合在一起?()
Britainhaslawstomakesurethatwomenhavethesameopportunitiesasmenineducation,jobsandtraining.Butit’sstillunus
KeepOurSeasCleanA)Bytheyear2050itisestimatedthattheworld’spopulationcouldhaveincreasedtoaround12billio
最新回复
(
0
)