首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
admin
2017-06-14
47
问题
设三元非齐次方程组的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,-1,1]
T
,η
3
+η
1
=[0,2,0]
T
.求该非齐次方程组的通解.
选项
答案
r(A)=1,AX=b的通解应为k
1
ξ
1
+k
2
ξ
2
+η,其中对应齐次方程AX=0的解为 ξ
1
=(η
1
+η
2
)-(η
2
+η
3
)=η
1
-η
3
=[-1,3,2]
T
, ξ
2
=(η
2
+η
3
)-(η
3
+η
1
)=η
2
-η
1
=[2,-3,1]
T
. 因ξ
1
,ξ
2
线性无关,故是AX=0的基础解系. 取AX=b的一个特解为 η=[*](η
3
+η
1
)=[0,1,0]
T
. 故AX=b的通解为 k
1
[-1,3,2]
T
+k
2
[2,-3,1]
T
+[0,1,0]
T
,k
1
,k
1
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/qpu4777K
0
考研数学一
相关试题推荐
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
如果0<β<α<π/2,证明
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
随机试题
20l8年2月,中共中央印发《中央党内法规制定工作第二个五年规划(20l8—2022年)》,着眼于到建党100周年时形成比较完善的党内法规制度体系,对今后5年党内法规制度建设进行顶层设计,提出了(),是推进新时代党内法规制度建设的重要指导性
从人民法院进行审判是否必须有辩护人参加的角度,可以将辩护人分为
下列关于肱骨髁上骨折的叙述正确的是
医院饮食中属于治疗饮食的是
下列企业发生的业务,应当填入《企业所得税年度纳税申报表(A类)》第3行“税金及附加”中的有()。
出租人既出租某项资产,又以该项资产为担保借入资金的租赁方式是()。
Theprimarypurposeoftheconcernedgroupandindividualsisto_________thegreenhousegasesandpollutants.
教师职业的最大特点在于职业角色的()。
下面关于虚拟存储管理的论述中,正确的是()。
A、Theartofsayingthankyou.B、Thesecretofstayingpretty.C、Theimportanceofgoodmanners.D、Thedifferencebetweenelegan
最新回复
(
0
)