首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
设三元非齐次方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T.求该非齐次方程组的通解.
admin
2017-06-14
48
问题
设三元非齐次方程组的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,-1,1]
T
,η
3
+η
1
=[0,2,0]
T
.求该非齐次方程组的通解.
选项
答案
r(A)=1,AX=b的通解应为k
1
ξ
1
+k
2
ξ
2
+η,其中对应齐次方程AX=0的解为 ξ
1
=(η
1
+η
2
)-(η
2
+η
3
)=η
1
-η
3
=[-1,3,2]
T
, ξ
2
=(η
2
+η
3
)-(η
3
+η
1
)=η
2
-η
1
=[2,-3,1]
T
. 因ξ
1
,ξ
2
线性无关,故是AX=0的基础解系. 取AX=b的一个特解为 η=[*](η
3
+η
1
)=[0,1,0]
T
. 故AX=b的通解为 k
1
[-1,3,2]
T
+k
2
[2,-3,1]
T
+[0,1,0]
T
,k
1
,k
1
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/qpu4777K
0
考研数学一
相关试题推荐
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
随机试题
提出绘画“妙在似与不似之间”的是_______。
下列选项中,符合木瓜功效的有
《母婴保健法》的实施起始时间是
A市的甲厂将货物托运给B市的乙厂,与铁路运输部门办理了货物运输手续,现设甲与乙的合同发生了变化,甲拟向承运人提出变更运输合同,在铁路部门将货物交付乙厂之前,甲可以提出哪些变更合同的请求?()
对于采用实物量法编制施工图预算,下列说法正确的是()。
初中生姚某在学校组织的义务劳动中,不慎造成腿部韧带拉断。对于姚某所受伤害,应当承担赔偿责任的是()。
六个城市中二氧化硫治理最好的城市是哪个?()沈阳市工业二氧化硫去除量占工业二氧化硫产出量的比例是()。
晕轮效应是指当认知者对一个人的某种特征形成好或坏的印象之后,他还倾向于由此推论这个人其他方面的特征。根据上述定义,未体现晕轮效应的一项是()。
下列化学元素对其对应的口腔问题有帮助的是:
A、Inasmallvillage.B、NorthofChicago.C、InWashington.D、InHawaii.A
最新回复
(
0
)