设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:.

admin2019-05-14  19

问题 设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:

选项

答案[*]等价于∫01f2(x)dx∫01xf(x)dx≥∫01f(x)dx∫01xf2(x)dx, 等价于∫01f2(x)dx∫01yf(y)dy≥∫01f(x)dx∫01yf2(y)dy,或者 ∫01dx∫01yf(x)f(y)[f(x)一f(y)]dy≥0 令I=∫01dx∫01yf(x)f(y)[f(x)一f(y)]dy, 根据对称性,I=∫01dx∫01xf(x)f(y)[f(y)一f(x)]dy, 2I=∫01dx∫01f(x)f(y)(y—x)[f(x)一f(y)]dy, 因为f(x)>0且单调减少,所以(y—x)[f(x)一f(y)]≥0,于是2I≥0,或I≥0, 所以[*].

解析
转载请注明原文地址:https://kaotiyun.com/show/qq04777K
0

随机试题
最新回复(0)