首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内可导,且f(0)≤0, 证明:存在ξ∈(ξ1,ξ2),使得f(ξ)+f’(ξ)=2020
设f(x)在(-∞,+∞)内可导,且f(0)≤0, 证明:存在ξ∈(ξ1,ξ2),使得f(ξ)+f’(ξ)=2020
admin
2021-12-14
51
问题
设f(x)在(-∞,+∞)内可导,且f(0)≤0,
证明:存在ξ∈(ξ
1
,ξ
2
),使得f(ξ)+f’(ξ)=2020
选项
答案
令G(x)=e
x
[f(x)-2020],x∈[ξ
1
,ξ
2
],则G(ξ
1
)=G(ξ
2
),由罗尔定理,存在ξ∈(ξ
1
,ξ
2
),使得G’(ξ)=0,即e
ξ
[f(ξ)+f’(ξ)-2020]=0,故f(ξ)+f’(ξ)=2020。
解析
转载请注明原文地址:https://kaotiyun.com/show/qzf4777K
0
考研数学二
相关试题推荐
设f(x)=(Ⅰ)讨论f(x)的连续性,若有间断点,则指出间断点的类型;(Ⅱ)判断f(x)在(﹣∞,1]是否有界,并说明理由。
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间(a,a+)内方程f(x)=0的实根个数为()
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能南α1,α2,α3线性表示,则对于任意常数k,必有
求下列极限,能直接使用洛必达法则的是[].
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
设f(x)连续,则在下列变上限积分中,必为偶函数的是()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
已知(x-1)y’’-xy’+y=0的一个解是y1=x,又知=ex-(x2+x+1),y*=-x2-1均是(x-1)y’’-xy’+y=(x-1)2的解,则此方程的通解是y=_______.
设A=(α1,α2,…,αn)是实矩阵,证明ATA是对角矩阵α1,α2,…,αn两两正交.
设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,求f(x)的表达式.
随机试题
小儿病危重,其食指可显现为
烧伤患者,高热灼手,汗多气粗,口渴头痛烦躁不安,舌红绛苔黄,脉洪数。其证型是
关于犯罪形态,下列哪种说法是正确的?
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f’(x)>0,f’’(x)>0,则在(-∞,0)内必有()。
如果当前的证券价格不仅反映了历史价格信息和所有公开的价格信息,该市场属于()。
对于长文档,使用键盘快速移动光标至文件首的操作是()。
Whatrhetoricdeviceisusedinthesentence"Manyhandsmakelightwork"?
材料 近日,特拉维夫大学宣布该学校实验室3D打印出了一颗“心脏”,该心脏不仅具有外形,还有细胞、血管和其他支撑结构,甚至可以像心脏一样收缩,但长度只有2.5厘米。该实验团队负责人说:“与过去相比,这项研究成果的突破点在于,这不仅是一个外观打印的心脏,而
某班级53名学生的物理成绩平均分为83分,标准差为7分,测验的信度为0.51。若小叶考试成绩为81分,那么在0.05的显著水平上,其真分数应该介于什么范围?()
RocketRenaissanceTheEarofPrivateSpaceflightIsAbouttoStartBackgroundTwoyearsago,peoplewitnessedthefirstspa
最新回复
(
0
)