首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2020-03-16
78
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n-3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n-3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是AX=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
)≤3, 从而r(γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
), 这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/hOA4777K
0
考研数学二
相关试题推荐
[2014年]已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2一(2一y)lny,求曲线f(x,y)=0所围图形绕直线y=一1旋转所成旋转体的体积.
[2005年]设有三元方程xy一zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程().
[20l5年]已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
[2012年]曲线y=x2+x(x<0)上曲率为√2/2的点的坐标是_________.
[2005年]设函数y=y(x)由参数方程确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是().
(03年)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.且f’(x)>0.若极限存在.证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2一a2
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
设求A和A-1+E的特征值.
设y(x)是初值问题的解,则∫0+∞xyˊ(x)dx=()
随机试题
请结合实际论述构建社会主义和谐社会的基本原则。
男性,74岁。20年前起患者出现阵发性头晕头痛,偶测血压最高达170/105mmHg。未服降压药治疗,近3年体力逐渐下降,出现劳累后气促,休息后可缓解,偶有双下肢水肿。半小时前搬重物后突然出现头痛,视力模糊,心悸气短,不能平卧,大汗,自服硝苯地平无缓解来诊
可行性研究的目的是使决策(),提高决策的可靠性,并为项目的实施和控制提供依据和参考。
对变压器引出线、套管及内部的短路故障,装设相应的保护装置,下列的表述中哪些符合设计规范要求?()
各单位应当建立财产清查制度,其主要内容包括()。
波斯纳认为经验的反思非常重要,基于此,他提出了一个教师成长公式:__________。
在第三个国家扶贫日到来之际,习近平主席对全国脱贫攻坚奖表彰活动作出重要指示,强调全面建成小康社会,实现第一个百年奋斗目标,一个标志性的指标是:
文化传播有多种途径,其中具有全球同时、受众主动、双向互动特点的文化传播途径是()。
打开指定文件夹下的演示文稿yswg08(如图),按下列要求完成对此文稿的修饰并保存。(1)在演示文稿的开始处插入一张“标题”幻灯片,作为文稿的第一张幻灯片,标题输入“计算机基础知识课程”,并将字号设置为48磅;在第二张幻灯片的副标题中输入“硬件+软件”
WhichofthefollowingitalicizedphrasesisINCORRECT?
最新回复
(
0
)