首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2020-03-16
66
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n-3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n-3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是AX=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
)≤3, 从而r(γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
), 这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/hOA4777K
0
考研数学二
相关试题推荐
[2002年]已知函数f(x)在(0,+∞)内可导,f(x)>0,f(x)=1,且满足,求f(x).
[2015年]若函数z=z(x,y)由方程ex+2y+3z+xyz=1确定,则dz∣(0,0)=________.
[2010年]记un=∫01∣1nt∣[ln(1+t)]ndt(n=1,2,…),求极限un.
[2010年]设m,n均是正整数,则反常积分dx的收敛性().
将长为a的一段铁丝截成两段,用一段围成正方形,另一段围成圆,为使正方形与圆的面积之和最小,问两段铁丝长各为多少?
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式(1)求导数f’(x);(2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy.
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
随机试题
简述我国古代改造利用自然的主要成就。
“越权行政”违反了公务员的()
慢性胃炎中出现下列哪项,被认为是癌前病变
患者,男性,56岁。诊断为支气管扩张,咯血100m1后突然出现胸闷气促、张口瞪目、两手乱抓、大汗淋漓、牙关紧闭。此时患者应取
承担公路水运工程质量事故鉴定的试验检测机构应满足以下()条件。
复核工作的主要内容包括( )。
下列关于开放式基金的表述,错误的是()。
______前儿童的注意基本上属于无意注意。
哲学社会科学作为人们认识世界、改造世界的重要______,历来是推动历史发展和社会进步的重要力量。纵观人类历史,人类社会每一次重大跃进,人类文明每一次重大发展,都离不开哲学社会科学的知识______和思想先导。哲学社会科学的发展水平,反映了一个民族的思维能
Beijingiswell______itsbeautifulsceneryandtheGreatWall.
最新回复
(
0
)