设常数a≥0,证明:当x>0时,(-2ax+1)e-x<1.

admin2020-10-30  44

问题 设常数a≥0,证明:当x>0时,(-2ax+1)e-x<1.

选项

答案令f(x)=ex-[*]+2ax-1,x>0,则f’(x)=ex-[*]+2a,f"(x)=ex-[*],f"’(x)=ex,令f"(x)=0,得x=-ln2,f"’(-ln2)=[*]>0,则x=-ln2是f’(x)的极小值点,也是最小值点,且最小值为f’(-ln2)=[*]+2a>0,故当x>0时,f’(x)≥f’(-ln2)>0,说明当x>0时,f(x)单调递增,于是f(x)>f(0)=0,即ex>[*]-2ax+1,故([*]-2ax+1)e-x<1.

解析
转载请注明原文地址:https://kaotiyun.com/show/rDx4777K
0

最新回复(0)