首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
admin
2017-12-31
66
问题
设y=f(x)为区间[0,1]上的非负连续函数.
(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
(2)设f(x)在(0,1)内可导,且f’(x)>
,证明(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=-∫
1
c
f(t)dt,即证明S
1
(c)= S
2
(c),或 cf(c)+∫
1
c
f(t)dt=0.令φ(x)=x∫
1
x
f(t)dt,φ(0)=φ(1)=0,根据罗尔定理.存在c∈(0,1),使得φ’(c)=0,即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(x)=xf(x)-∫
x
1
f(t)dt,因为h’(x)=2f(x)+xf’(x)>0,所以h(x)在[0,1]上为单调函数.所以(1)中的c是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/rHX4777K
0
考研数学三
相关试题推荐
证明:当x>0时,有
设生产函数和成本函数分别为当成本预算为S时,两种要素投入量x和y,为多少时,产量Q最大,并求最大产量.
在第一象限的椭圆上求一点,使过该点的法线与原点的距离最大.
将函数f(x)=展开成x的幂级数,并指出其收敛区间.
求微分方程的通解.
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设A为三阶矩阵,有三个不同特征值λ1,λ2,λ3,对应的特征向量依次为α1,α2,α3,令β=α1+α2+α3.(1)证明:β不是A的特征向量;(2)β,Aβ,A2β线性无关;(3)若A3β=Aβ,计算行列式|2A+3E|.
随机试题
男性,25岁,1型糖尿病患者。平时每日注射胰岛素总量60U。近1周来因胰岛素用完而停用胰岛素治疗。乏力2天,昏迷4小时入院。在下列处理中哪项是不正确的
正常肾脏的长径、宽径、厚径超声测值分别为
牙齿燥如枯骨属于
房室交界性逸搏心律见于室性逸搏或逸搏心律见于
关于苯丙酮尿症,以下描述错误的是()。
1840—1901年,清政府被迫与外国列强签署了一系列不平等条约。下列条约中,与俄国签,订的有()。①《南京条约》②《天津条约》③《北京条约》④《马关条约》⑤《辛丑条约》
假设NC和AC分别代表边际成本曲线和平均成本曲线,以下说法中正确的有( )。
以下属于大型机构投资者的有()。
下列关于法律与道德关系的表述中,错误的是()。
Oneofthebiggestchangessince1990isthedegreetowhichbioterrorismhasbecomeapublichealthpriority.Althoughthereha
最新回复
(
0
)