首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
设y=f(x)为区间[0,1]上的非负连续函数. (1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积; (2)设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c
admin
2017-12-31
83
问题
设y=f(x)为区间[0,1]上的非负连续函数.
(1)证明:存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
(2)设f(x)在(0,1)内可导,且f’(x)>
,证明(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=-∫
1
c
f(t)dt,即证明S
1
(c)= S
2
(c),或 cf(c)+∫
1
c
f(t)dt=0.令φ(x)=x∫
1
x
f(t)dt,φ(0)=φ(1)=0,根据罗尔定理.存在c∈(0,1),使得φ’(c)=0,即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(x)=xf(x)-∫
x
1
f(t)dt,因为h’(x)=2f(x)+xf’(x)>0,所以h(x)在[0,1]上为单调函数.所以(1)中的c是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/rHX4777K
0
考研数学三
相关试题推荐
若f(x)dx=F(x)+C且x=at+b(a≠0),则f(t)dt=________.
求下列极限.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f’(x)]都存在,且f-1[f-1(x)]≠0.证明:
函数y=f(x)满足条件f(0)=1,f’(0)=0,当x≠0时,f’(x)>0,则它的图形是()
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数。试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an,求:级数的和.
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则【】
设y=sinx,问t为何值时,图2.4中阴影部分的面积S1与S2之和S最小?最大?
求二元函数z=f(x,y)=c2y(4一x—y)在由直线x+y=6、x轴和y轴所围成的闭区域D上的极值,最大值与最小值.
随机试题
下列关于施工质量影响因素的说法,错误的是()。
简述企业技术创新战略的特点。
onmutuallydevelopitlongandacrosswhoevenefficientcomparative
如果使隐名代理产生显名代理的法律效果,则()。
中性粒细胞占白细胞总数的比例是()
家住A区的甲诉家住B区的乙借款纠纷一案由C区基层人民法院审理终结。借款纠纷案发生在D区,一审法院判决乙返还甲借款本金70000元,驳回了甲要求乙支付利息的请求。判决书向双方当事人送达后,乙向E市中级人民法院上诉,甲未上诉,但甲在答辩状中向二审法院提出了让乙
利用隔膜使溶剂或微粒分离的方法称为膜分离法。利用隔膜分离溶液时,使溶质通过膜的方法称为()。
在设计阶段,运用价值工程方法的目的是()。
简述问题解决的基本过程。
如果项目实际进度比计划提前20%,实际成本只用了预算成本的60%,首先应该(66)。
最新回复
(
0
)