首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的密度函数为f(x),方差DX=4,而随机变量Y的密度函数为2f(一2y),且X与Y的相关系数记Z=X+2Y. (I)求EZ,DZ; (Ⅱ)用切比雪夫小等式估计概率P{|Z|≥4}.
设随机变量X的密度函数为f(x),方差DX=4,而随机变量Y的密度函数为2f(一2y),且X与Y的相关系数记Z=X+2Y. (I)求EZ,DZ; (Ⅱ)用切比雪夫小等式估计概率P{|Z|≥4}.
admin
2018-05-23
78
问题
设随机变量X的密度函数为f(x),方差DX=4,而随机变量Y的密度函数为2f(一2y),且X与Y的相关系数
记Z=X+2Y.
(I)求EZ,DZ;
(Ⅱ)用切比雪夫小等式估计概率P{|Z|≥4}.
选项
答案
(I)EZ=E(X+2Y)=EX+2EY=∫
-∞
+∞
xf(x)dx+2∫
-∞
+∞
y.2f(一2y)dy =∫
-∞
+∞
xf(x)dx+∫
-∞
+∞
(一2y)f(一2y)d(一2y) [*]∫
-∞
+∞
xf(x)dx+∫
+∞
-∞
tf(t)dt=0, 由此可知,EZ=0,EY=[*]又DY=EY
2
一(EY)
2
,而 [*] (Ⅱ)由切比雪夫不等式 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rOX4777K
0
考研数学三
相关试题推荐
已知A是3阶矩阵,A的特征值为1,2,3.则(A*)*的最大特征值为________.
已知.f(x)二阶可导,且f(x)>0,f(x)fˊˊ(x)-[fˊ(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2(x1,x2∈R);(2)若f(0)=1,证明:f(x)≥efˊ(0)x(x∈R).
方程y(4)-2ˊˊˊ-3yˊˊ=e-3x-2e-x+x的特解形式(其中a,b,c,d为常数)是()
设函数f(x)在[0,1]上连续,(0,1)内可导,且3f(x)dx=f(0).证明:在(0,1)内存在一点c,使fˊ(c)=0.
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,fˊ(0)=0.证明:在[-1,1]内存在ξ,使得fˊˊˊ(ξ)=3.
由曲线y=x3,y=0及x=1所围图形绕x轴旋转一周得到的旋转体的体积为_________.
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+fˊ(x)的零点.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值。
设x一3sin3x+ax一2+b)=0,求a,b的值.
随机试题
奥运会的格言是“更快、更高、更强”。请结合这一格言,自拟题目。要求:A.自定立意,可写成记叙文、议论文。B.不少于800字。C.字迹工整,卷面整洁。
小儿腹泻脱水,在脱水纠正后出现抽搐,最常见的原因是
印制规范包括()要求。
根据《会计人员继续教育暂行规定》,具有初级会计专业技术资格的会计人员每年接受继续教育的培训时间最少应为()。
下列各项中,属于企业所有者权益组成部分的有()。
Whathealthproblemsdomanyelderlyhave?MaggieKuhntravelsacrosstheUnitedStatesinorderto______elders.
A、 B、 C、 D、 D
A、Yellow.B、Green.C、White.A本题询问丽莉的衣服是什么颜色的。女士说:TheblueoneisLucy’s,andtheyellowoneisLily’s.可知答案为[A]Yellow。
MESOLITHICCOMPLEXITYINSCANDINAVIA(1)TheEuropeanMesolithic(roughlytheperiodfrom8000B.C.to2700B.C.)testifiest
A、Hefounditmoreprofitable.B、Hewantedtobehisownboss.C、Hedidn’twanttostartfromscratch.D、Hedidn’twanttobein
最新回复
(
0
)