首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(09年)设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(09年)设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
admin
2017-05-26
32
问题
(09年)设
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中的任意向量ξ
2
,ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关.
选项
答案
(Ⅰ)设考ξ
2
=(χ
1
,χ
2
,χ
3
)
T
,解方程组Aξ
2
=ξ
1
,由 [*] 得χ
1
=-χ
2
,χ
3
=1-2χ
2
(χ
2
任意).令自由未知量χ
2
=-c,则得 [*] 设ξ
3
=(y
1
,y
2
,y
3
)
T
,解方程组A
2
ξ
3
=ξ
1
,由 [*] 得y
1
=-[*]-y
2
(y
2
,y
3
任意).令自由未知量y
2
=c
2
,y
3
=c
3
,则得 [*] 其中c
2
,c
3
为任意常数. (Ⅱ)3个3维向量ξ
1
,ξ
2
,ξ
3
线性无关的充要条件是3阶行列式D=|ξ
1
ξ
2
ξ
3
|≠0.而 [*] 所以ξ
1
,ξ
2
,ξ
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/rRH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
A、 B、 C、 D、 B
已知A=(a1,a2,a3,a4),其中a1,a2,a3,a4为四维列向量,方程组AX=0的通解为k(2,一1,1,4)T,则a3可由a1,a2,a4线性表示为_____.
若函数f(x)及g(C)在(一∞,+∞)内都可导,且f(x)
设F(x)在闭区间[0,c]上连续,其导数F’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:F(a+b)≤F(a)+F(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
设试补充定义f(1),使得f(x)在[1/2,1]上连续.
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间T的概率密度f(t)、数学期望和方差.
如下图,连续函数y=f(x)在区间[-3,-2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是().
设f(x)为连续函数.且x2+y2+z2=∫xyf(x+y-t)dt,则=______
求∫arcsin2xdx.
随机试题
WithoutthehelpofmyEnglishteacher,I(win)________thefirstprizeintheEnglishSpeakingCompetition.
Beingvery_____,heknewwhatwasgoingonabouthim.
离散型随机变量的分布律具备()性质。
证券公司设立限定性集合资产管理计划,应当事先报( )。
企业处置一项以公允价值模式计量的投资性房地产,实际收到的金额为100万元,投资性房地产的账面余额为80万元,其中成本为70万元,公允价值变动为10万元。该项投资性房地产是由自用房地产转换的,转换日公允价值大于账面价值的差额为20万元。假设不考虑相关税费,处
H公司司是一家高成长的公司,目前每股价格为20元,每股股利为1元,股利预期增长率为6%。H公司现在急需筹集资金5000万元,有以下3个备选方案。方案1:按照目前市价增发股票250万股。方案2:平价发行10年期的长期债券。目前新发行的10年期政府债券的
青春期阶段的自我中心主义是否认其他人可能有不同的知觉和相信的事物。()
随着手机和网络的普及,人们开始随时随地地获取各种信息。但有研究认为,正是因为人们接触过多信息,导致想法增多。过多想法无法实现时,人们会利用各种信息填充大脑,让无法实现的想法所带来的焦虑暂时不进入脑海。根据以上描述可以推出()。
一台主机正在通过一条10Gbit/s的信道发送65535字节的满窗口数据,信道的往返延迟为1mS,不考虑数据处理时间。TCP连接可达到的最大数据吞吐量是()。(假设用于标记字节的序号位为32位,报文的生存时间为120s)
有以下程序:#include<iostream.h>Floatfun(intx,inty){return(x+y);}voidmain(){inta=2,b=5,c=8;cout<
最新回复
(
0
)