首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设A是n阶方阵,A=O是否是A2=O的充分必要条件,说明理由; (Ⅱ)设A是2阶方阵,证明A3=O的充分必要条件是A2=O.
(Ⅰ)设A是n阶方阵,A=O是否是A2=O的充分必要条件,说明理由; (Ⅱ)设A是2阶方阵,证明A3=O的充分必要条件是A2=O.
admin
2019-01-24
20
问题
(Ⅰ)设A是n阶方阵,A=O是否是A
2
=O的充分必要条件,说明理由;
(Ⅱ)设A是2阶方阵,证明A
3
=O的充分必要条件是A
2
=O.
选项
答案
(Ⅰ)因A=O,则A
2
=O,故A=O是A
2
=O的充分条件. 取反例,[*],知A=O不是A
2
=O的必要条件. (Ⅱ)因A
2
=O,则A
3
=O,故A
2
=O是A
3
=O的充分条件. 现证A
3
=O[*]
2
=O. 因A
3
=O,故|A
3
|=|A|
3
=0,即|A|=0,则A是不可逆矩阵. 故r(A)<2,即r(A)=0或r(A)=1. 当r(A)=0时,A
3
=O[*]A
2
=O; 当r(A)=1时,A≠O,A的两列成比例.设[*] [*] 其中μ≠0,若μ=0已证A
2
=O.由A
3
=A
2
A=μAA=μA
2
=O,μ≠0,得证A
2
=O. 故当A是2阶方阵时,A
2
=O[*]A
3
=O.
解析
转载请注明原文地址:https://kaotiyun.com/show/rcM4777K
0
考研数学一
相关试题推荐
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx(x0,y0)fy(x0,y0)都存在,且=(x0,y0)=L(x0,y0)△x+fy(x0,y0)△y。
确定a,b,使得当x→0时,a—cosbx+sin3x与x3为等价无穷小.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
试求z=f(x,y)=x3+y3一3xy在矩形闭域D={(x,y)|0≤x≤2,一1≤y≤2}上的最大值、最小值.
一工人同时独立制造三个零件,第k个零件不合格的概率为(k=1,2,3),以随机变量X表示三个零件中不合格的零件个数,则P(X=2)=________.
设z=f[x+φ(x—y),y],其中f二阶连续可偏导,φ二阶可导,求.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn.求方程组AX=b的通解.
设随机变量X服从参数为2的指数分布,证明:Y=1一e-2X在区间(0,1)上服从均匀分布.
随机试题
流行性乙型脑炎最主要的3种凶险症状是
实寒的脉象为
对项目经理描述不正确的是()。
农业人口的安置补助费标准为该耕地被征用前3年平均年产值的( )倍。
岩石根据坚固系数的大小分级,XV级的坚固系数的范围是()。
以下关于质量改进“分析问题原因”的描述中正确的有()。
一般资料:求助者,男性,16岁,高一学生。案例介绍:求助者家在偏远山区,排行老大,有两妹一弟。从小懂事,知道父母种地辛苦,养成了勤俭节约的好品质。成绩一直在班上名列前茅。初一开始当班干部,深得老师喜欢。中考时以全县第一名的成绩考入市重点中学。为学
关于法的规范作用,下列哪一说法是正确的?()
每个B类网络有(26)个网络节点。
Payandproductivity,itisgenerallyassumed,shouldberelated.Buttherelationshipseemstoweaken【C1】______peoplegetolde
最新回复
(
0
)