首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
admin
2017-08-31
34
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
求方程组AX=b的通解.
选项
答案
因为α
1
+2α
2
+…+(n一1)α
n-1
=0,所以α
1
+2α
2
+…+(n一1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n—1,0)
T
,又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
,故方程组AX=b的通解为kξ+η=k(1,2,…,n一1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/lGr4777K
0
考研数学一
相关试题推荐
(2002年试题,十)设A,B为同阶方阵.当A,B均为实对称矩阵时,试证(1)的逆命题成立.
(2004年试题,三)设有方程xn+nx一1=0,其中n为正整数.证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
设,试证明:级数条件收敛.
假设f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,记F(x)=,证明:F(x)在(a,+∞)内单调增加.
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.计算行列式|A+E|.
设有向曲面S:z=x2+y2,x≥0,y≥0,z≤1,法向量与z轴正向夹角为钝角.求第二型曲面积分
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠O,使得AB=O,则().
随机试题
A.维生素A缺乏B.维生素B1缺乏C.维生素C缺乏D.维生素D缺乏E.维生素K缺乏原发性胆汁性肝硬化患者出现出血倾向为
A、Findahigh-payingpart-timejob.B、Borrowsomemoneyfromfinancialaid.C、Practicehisknowledgeinfieldwork.D、Preparefo
CD2分子的配体主要是
男,19岁,发热、牙龈出血10天,实验室检查:Hb75g/L,WBC2.0×109/L,细胞分类示:中性粒细胞70%,淋巴细胞25%,单核细胞5%,PLT23×109/L,骨髓检查显示增生明显活跃,原始细胞占35%,早幼粒细胞占16%。骨髓、血象增生极
面部危险三角区感染时禁用热疗的主要原因是
大叶性肺炎灰色肝样变期肺实变是因为肺泡腔内充满
一座7层单元式住宅,底层为商业网点,其中面积为100m2的录像厅茶座及面积为150m2的电子游艺室均要求设计自动喷水灭火局部应用系统。采用流量系数k=80的快速响应喷头。喷头的平均工作压力以0.10MPa计,作用面积内各喷头流量相等。该系统在屋面设置专用消
在托收结算方式中,付款人如果拒绝付款或承兑,应向()申明理由。
韦氏儿童智力量表的测验材料包括()。
下列关于“一带一路”说法错误的是:
最新回复
(
0
)