首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤χ≤1,0≤y≤1; (Ⅱ)I=|3χ+4y|dχdy,其中D:χ2+y2≤1; (Ⅲ)I=ydχdy,其中D由直线χ=-2,y=0,y=2及曲线χ=-所围成.
求下列二重积分: (Ⅰ)I=,其中D为正方形域:0≤χ≤1,0≤y≤1; (Ⅱ)I=|3χ+4y|dχdy,其中D:χ2+y2≤1; (Ⅲ)I=ydχdy,其中D由直线χ=-2,y=0,y=2及曲线χ=-所围成.
admin
2017-04-11
36
问题
求下列二重积分:
(Ⅰ)I=
,其中D为正方形域:0≤χ≤1,0≤y≤1;
(Ⅱ)I=
|3χ+4y|dχdy,其中D:χ
2
+y
2
≤1;
(Ⅲ)I=
ydχdy,其中D由直线χ=-2,y=0,y=2及曲线χ=-
所围成.
选项
答案
(Ⅰ)尽管D的边界不是圆弧,但由被积函数的特点知选用极坐标比较方便.D的边界线χ=1及y=1的极坐标方程分别为 [*] (Ⅱ)在积分区域D上被积函数分块表示,若用分块积分法较复杂.因D是圆域,可用极坐标变换,转化为考虑定积分的被积函数是分段表示的情形.这时可利用周期函数的积分性质. 作极坐标变换χ=rcosθ,y=rsinθ,则D:0≤θ≤2π,0≤r≤1.从而 [*] 其中sinθ
0
=[*],cosθ
0
=[*].由周期函数的积分性质,令t=θ+θ
0
就有 [*] (Ⅲ)D的图形如图8.27所示.若把D看成正方形区域挖去半圆D
1
,则计算D
1
上的积分自然选用极坐标变换.若只考虑区域D,则自然考虑先χ后y的积分顺序化为累次积分.若注意D关于直线y=1对称,选择平移变换则最为方便. [*] 作平移变换u=χ,v=y-1,注意曲线χ=-[*], 即χ
2
(y-1)
2
=1,χ≤0,则D变成D′. D′由u=-2,v=-1,v=1,u
2
+v
2
=1(u≤0)围成,则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rtt4777K
0
考研数学二
相关试题推荐
累计积分可以写成________。
A、x=2为f(x)的极大值点B、x=2为f(x)的极小值点C、(2,1)为曲线y=f(x)的拐点D、x=2不是极值点,(2,1)也不是y=f(x)的拐点A
求微分方程(x-2xy-y2)+y2=0的通解。
微分方程y"+2y’+5y=0的通解为________。
设二阶常系数线性微分方程y"+ay’+βy=γex的一个特解为y=e2x+(1+x)ex,试确定常数α,β,γ,并求该方程的通解。
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
设,问a,b为何值时,函数F(x)=f(x)+g(x)在﹙﹣∞,﹢∞﹚上连续。
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设A为反对称矩阵,且|A|≠0,B可逆,A、B为同阶方阵,A*为A的伴随矩阵,则[ATA(B-1)T]-1=().
设f(χ)在(0,+∞)三次可导,且当χ∈(0,+∞)时|f(χ)|≤M0,|f″′(χ)|≤M3,其中M0,M3为非负常数,求证f〞(χ)在(0,+∞)上有界.
随机试题
不得驾驶具有安全隐患的机动车上道路行驶。
ValenciaisintheeastpartofSpain.Ithasaportonthesea,twomilesawayfromthecoast.Itisthecapitalofaprovince
下列关于遗传密码的叙述中正确的是
尿瘘的主要预防措施是
在成长期的投资目的是()。
某施工合同中约定设备由施工企业自行采购。施工期间,建设单位要求施工企业购买某品牌设备,理由是该品牌设备的生产商与建设单位有长期合作关系,关于本案中施工企业的行为,正确的是()。
甲公司拟购买一台大型生产设备,于2007年6月1日与乙公司签订一份价值为80万元的生产设备买卖合同。合同约定:(1)设备直接由乙公司的特约生产服务商丙机械厂于9月1日交付给甲公司;(2)甲公司于6月10日向乙公司交付定金16万元;(3)甲公司于设备交
有以下程序,程序运行后的输出结果是voidfun(int*p1,int*p2,int*S){s=(int*)malloc(sizeof(int));*S=*p1+*(p2++);}main(){inta[2]={1,2},b[
A、Itwasbecausethefirsttimewasn’tasuccess.B、Thissecondtimewasforherunbornbaby.C、Shewantedtosetagoodexample
HowtoKeepYourNewYear’sResolutionsAbouthalfofallAmericanadultssaytheyareatleastsomewhatlikelytomakeaNe
最新回复
(
0
)