首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明=(n+1)an.
证明=(n+1)an.
admin
2018-11-20
34
问题
证明
=(n+1)a
n
.
选项
答案
本题以证明题的形式出现,容易诱导想到用数学归纳法.记此行列式为D
n
,对第1行展开,得递推公式 D
n
=2aD
n-1
—a
2
D
n-2
. D
n
=2aD
n-1
—a
2
D
n-2
.改写为D
n
一aD
n-1
=a(D
n-1
一aD
n-2
),记H
n
=D
n
一aD
n-1
(n≥2),则n≥3时H
n
=aH
n-1
,即{H
n
}是公比为a的等比数列.而H
2
=D
2
一aD
1
=3a
2
一2a
2
=a
2
,得到H
n
=a
n
,于是得到一个新的递推公式 D
n
=aD
n-1
+a
n
, 两边除以a
n
,得D
n
/a
n
=D
n-1
/a
n-1
+1.于是{D
n
/a
n
}是公差为1的等差数列.D
1
/a=2,则 D
n
/a
n
=n+1,D
n
=(n+1)a
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ruW4777K
0
考研数学三
相关试题推荐
设Q为三阶非零矩阵,且PQ=0,则().
设0<a<b,证明:
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:|f(c)|≤2a+.
现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球.(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.
设A为三阶矩阵,有三个不同特征值λ1,λ2,λ3,对应的特征向量依次为α1,α2,α3,令β=α1+α2+α3.(1)证明:β不是A的特征向量;(2)β,Aβ,A2β线性无关;(3)若A3β=Aβ,计算行列式|2A+3E|.
函数f(x)=|x3+x2—2x|arctanx的不可导点的个数是().
设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X—Y不相关的充分必要条件为().
设D={(x,y|x2+y2≤R2,R>0},常数λ≠0,则积分∫02πdθ∫0R(eλrcosθ一eλrsinθ)rdr的值().
设三阶行列式D3的第二行元素分别为1、—2、3,对应的代数余子式分别为—3、2、1,则D3=________。
假设二维随机变量(X1,X2)的协方差矩阵为其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
随机试题
下面各项中属于发散思维的表现形式的有()
A.1000~2000mLB.1700~2500mLC.3500~4000mLD.5500~6000mLE.30000~35000mL50kg体重的人,其体液量约为
男婴,10个月,对蛋白质需要量是3.5g/kg,而成人则为1.0/kg,其相差如此之大是因为
机械排风系统的进风口,其下缘距离室内地面的高度应小于等于()m。
证券公司自营业务的内部控制中重点防范的风险不包括( )。
有形席位的申报方式可以缩短申报时间与成交回报时间,同时也可以降低申报时差。()
世界人均淡水水量约8300立方米,但每年有2/3以洪水形式流失,其余1/3成为饮用水和灌溉用水。由于工业化和人类用水量的增加,目前世界用水量与1990年相比增加了近10倍。可见未来的淡水不足足以构成经济发展和粮食生产的制约因素之一。这段话主要支持了这样一
AlfredNobel,aSwedishinventorcontributedmostofhisvastfortuneinatrustasafundfromwhichannualprizescouldbeawa
有如下程序#includeusingnamespacestd;classBase{protected:Base(){tout
Whichstatementcanbestfittoeachofthefollowingsituation?ChooseFIVEanswersfromtheboxandwritethecorrectletter,
最新回复
(
0
)