首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)﹦xTAx,其中二次型矩阵A的主对角元素的和为3。AB﹦O,其中 B﹦ (I)用正交变换化二次型为标准形,并求所做的正交变换; (Ⅱ)求该二次型的具体表达式。
设二次型f(x1,x2,x3)﹦xTAx,其中二次型矩阵A的主对角元素的和为3。AB﹦O,其中 B﹦ (I)用正交变换化二次型为标准形,并求所做的正交变换; (Ⅱ)求该二次型的具体表达式。
admin
2019-01-22
33
问题
设二次型f(x
1
,x
2
,x
3
)﹦x
T
Ax,其中二次型矩阵A的主对角元素的和为3。AB﹦O,其中
B﹦
(I)用正交变换化二次型为标准形,并求所做的正交变换;
(Ⅱ)求该二次型的具体表达式。
选项
答案
(I)根据已知条件 AB﹦A[*]﹦O, 因此矩阵B的3个列向量均为A的对应于特征值λ﹦0的特征向量,其中 β
1
﹦(1,2,1)
T
,β
2
﹦(-2,1,0)
T
,2β
1
-β
2
﹦(4,3,2)
T
,故λ﹦0至少为矩阵A的二重特征值。 根据A的主对角元素的和为3可得A有一个特征值为3,因此属于矩阵A的特征值分别为0,0,3。矩阵A是一个实对称矩阵,因此属于特征值3的特征向量与属于特征值0的两个特征向量均正交,可得方程组[*]解得β
3
﹦(x
1
,x
2
,x
3
)
T
﹦(1,2,-5)
T
。 故存在正交变换x﹦Qy,其中 [*] 二次型化为f﹦x
T
Ax﹦y
T
[*]y﹦3y
2
3
。 (Ⅱ)由于Q
T
AQ﹦[*],因此 [*] 所以该二次型的具体表达式为f﹦[*](x
1
2
﹢ 4x
2
2
﹢25 x
3
2
﹢4x
1
x
2
﹣10 x
1
x
3
﹣20 x
2
x
3
) 本题考查化二次型为标准形。第一问通过矩阵方程及主对角线元素的和可得出矩阵A的特征值,利用属于不同特征值的特征向量正交的性质求出A的所有特征向量,从而得出正交矩阵。第二问利用第一问的逆向变化计算矩阵的乘积即可得出矩阵A的具体形式。
解析
转载请注明原文地址:https://kaotiyun.com/show/ryM4777K
0
考研数学一
相关试题推荐
α1=(1,2,一1,0)T,α2=(1,1,0,2)T,α3=(2,1,1,a)T,α1,α2,α3生成的向量空间为2维空间,则,a=______.
已知齐次方程组(I)解都满足方程x1+x2+x3=0,求a和方程组的通解.
已知线性方程组有解(1,一1,1,一1)T.(1)用导出组的基础解系表示通解;(2)写出x2=x3的全部解.
已知平面上三条直线的方程为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
设随机变量且P{|X|≠|Y|}=1.(I)求X与Y的联合分布律,并讨论X与Y的独立性;(Ⅱ)令U=X+Y,V=X-Y,讨论U与V的独立性.
设随机变量X和Y相互独立,且X~N(1,2),Y~N(一3,4),则随机变量Z=一2X+3Y+5的概率密度为f(z)=_____.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
求曲线在yOz平面上的投影方程.
求下列曲面积分,其中∑为由区面y=x2+z2与平面y=1,y=2所围立体表面的外侧.
以y=C1ex+ex(C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为________.
随机试题
Whatwastheoriginoftheoilwhichnowdrivesourmotorcarsandaircraft?Scientistsare【C1】______aboutthe【C2】______ofcoal,
注射用水应于制备后几小时内使用
开放性气胸的紧急处理应为
A.AUGB.GUAC.UAA、UGA、UAGD.AUG、UGA、UAGE.AAU、AGU、GAU无意义密码子是
城市交通系统中、的交通行为的运作是指()。
2011年1—9月,全国造船完工5101万载重吨,同比增长18.3%,9月当月完工786万载重吨,环比增长67.2%,新承接船舶订单规模2902万载重吨,同比下降42.8%,手持船舶订单规模16886万载重吨,同比下降13.8%,比2010年底下降1
《四川省世界遗产保护条例》关于世界遗产生态环境的保护的规定是怎样的?
AJustaschildrentheworldoverBlikeChristmasrooming,CadultssolikeChristmaseveningwhenDpeaceandcalmreturntotheh
Whichstatementbestdescribestheman?
Wouldyoubehappierifyouspentmoretimediscussingthestateoftheworldandthemeaningoflife—andlesstimetalkingabou
最新回复
(
0
)