首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)﹦xTAx,其中二次型矩阵A的主对角元素的和为3。AB﹦O,其中 B﹦ (I)用正交变换化二次型为标准形,并求所做的正交变换; (Ⅱ)求该二次型的具体表达式。
设二次型f(x1,x2,x3)﹦xTAx,其中二次型矩阵A的主对角元素的和为3。AB﹦O,其中 B﹦ (I)用正交变换化二次型为标准形,并求所做的正交变换; (Ⅱ)求该二次型的具体表达式。
admin
2019-01-22
58
问题
设二次型f(x
1
,x
2
,x
3
)﹦x
T
Ax,其中二次型矩阵A的主对角元素的和为3。AB﹦O,其中
B﹦
(I)用正交变换化二次型为标准形,并求所做的正交变换;
(Ⅱ)求该二次型的具体表达式。
选项
答案
(I)根据已知条件 AB﹦A[*]﹦O, 因此矩阵B的3个列向量均为A的对应于特征值λ﹦0的特征向量,其中 β
1
﹦(1,2,1)
T
,β
2
﹦(-2,1,0)
T
,2β
1
-β
2
﹦(4,3,2)
T
,故λ﹦0至少为矩阵A的二重特征值。 根据A的主对角元素的和为3可得A有一个特征值为3,因此属于矩阵A的特征值分别为0,0,3。矩阵A是一个实对称矩阵,因此属于特征值3的特征向量与属于特征值0的两个特征向量均正交,可得方程组[*]解得β
3
﹦(x
1
,x
2
,x
3
)
T
﹦(1,2,-5)
T
。 故存在正交变换x﹦Qy,其中 [*] 二次型化为f﹦x
T
Ax﹦y
T
[*]y﹦3y
2
3
。 (Ⅱ)由于Q
T
AQ﹦[*],因此 [*] 所以该二次型的具体表达式为f﹦[*](x
1
2
﹢ 4x
2
2
﹢25 x
3
2
﹢4x
1
x
2
﹣10 x
1
x
3
﹣20 x
2
x
3
) 本题考查化二次型为标准形。第一问通过矩阵方程及主对角线元素的和可得出矩阵A的特征值,利用属于不同特征值的特征向量正交的性质求出A的所有特征向量,从而得出正交矩阵。第二问利用第一问的逆向变化计算矩阵的乘积即可得出矩阵A的具体形式。
解析
转载请注明原文地址:https://kaotiyun.com/show/ryM4777K
0
考研数学一
相关试题推荐
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
AB=0,A,B是两个非零矩阵,则
设总体X服从正态分布N(μ,σ2),其中σ2为已知,则当样本容量n一定时,总体均值μ的置信区间长度l增大,其置信度1一α的值
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A一aE)(A一bE)=0.(2)r(A一aE)+r(A一bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数.
求以曲线为准线,{l,m,n}为母线方向的柱面方程.
求曲线积分I=xydx+yzdx+xzdz,C为椭圆周:x2+y2=1,x+y+z=1,逆时针方向.
求下列曲面积分,其中∑为由区面y=x2+z2与平面y=1,y=2所围立体表面的外侧.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设y’’一3y’+ay=一5e-x的特解形式为Axe-x,则其通解为_______.
随机试题
国家秘密的密级分为()
CNG是指__________。
青年男性,胸部手术后,如切口无感染,其拆线时间为
妊娠图不包括:
申请设立外资企业,审批机关应当在收到申请设立外资企业的全部文件之日起( )内决定批准或者不批准。
赵某是甲科研所的工作人员,他承担了本单位的某项科技开发课题,研制一种冷凝机。在尚未研制成功时,赵某工作调动,调至乙科研院工作,赵某又利用乙科研院的设备及技术资料继续研制,终于将新型冷凝机研制成功。丙厂认为该冷凝机市场很大,遂向赵某提出转让该冷凝机技术的请求
π
A、他们喜欢骗人B、他们脾气不好C、他们要求太多D、他们会伤害我们D
Languageissaidtobearbitrarybecausethereisnologicalconnectionbetweenmeaningsand
From1760sonwards,therewasagreatchangeinthewaypeoplelived.Machineswere【B1】______thatcouldmakethingsmuchfaster
最新回复
(
0
)