首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 与方程x1+2x2+x3=a一1 ② 有公共解,求a的值及所有公共解.
设线性方程组 与方程x1+2x2+x3=a一1 ② 有公共解,求a的值及所有公共解.
admin
2017-04-24
45
问题
设线性方程组
与方程x
1
+2x
2
+x
3
=a一1 ②
有公共解,求a的值及所有公共解.
选项
答案
方程组(Ⅰ)的系数矩阵A的行列式为 [*] (1)当|A|≠0,即a≠1且a≠2时,方程组(Ⅰ)只有零解,而零解x=(0,0,0)
T
不满足方程(Ⅱ),故当a≠1且a≠2时,(Ⅰ)与(Ⅱ)无公共解; (2)当a=1时,由A的初等行变换 [*] 得方程组(Ⅰ)的通解为x=c(1,0,一1)
T
,其中c为任意常数.显然当a=1时,(Ⅱ)是(I)的一个方程, (Ⅰ)的解都满足(Ⅱ).所以,当a=1时,(Ⅰ)与(Ⅱ)的所有公共解是x=c(1,0,一1)
T
,其中c为任意常数; (3)当a=2时,由A的初等行变换 [*] 得(Ⅰ)的通解为x=k(0,1,一1)
T
,要使它是(Ⅱ)的解,将其代入方程(Ⅱ),得k=1,故当a=2时,(Ⅰ)与(Ⅱ)的公共解为x=(0,1,一1)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ryt4777K
0
考研数学二
相关试题推荐
函数f(x)=x3-3x+k只有一个零点,则k的范围为().
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得f’(ζ)/f’(ξ)=ξ/η.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=∫01f(x)dx=0,证明:存在ξ∈(0,1),使得f’(ξ)+f(ξ)=0.
设f(x)在(-∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
求下列微分方程的通解。(ex+y-ex)dx+(ex+y+ey)dy=0
验证y=C1x5+lnx(C1,C2是任意常数)是方程x2y"-3xy’-5y=x2lnx的通解。
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当L与直线y=ax所围成平面图形的面积为时,确定a的值。
设A,B为同阶可逆矩阵,则().
已知函数f(x)=ax3-6ax2+b(a>0),在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
设矩阵A与B相似,且求a,b的值;
随机试题
审美形态
企业主要依靠自身力量进行技术开发和产品开发的科技战略属于()
下列关于JPEG标准的叙述,错误的是()
一位医生在为其患者进行角膜移植手术的前一夜,发现备用的眼球已经失效,于是到太平间看是否有尸体能供角膜移植之用,恰巧有一尸体。考虑到征求死者家属意见很可能会遭到拒绝,而且时间也紧迫,于是便取出了死者的一侧眼球,然后用义眼代替,尸体火化前,死者家属发现此事,便
药物的消除过程包括()。
下列哪些是快速接地开关的选择依据条件?
编制单位工程施工图预算的方法和过程基本相同的审核方法是( )。
涤纶制男式阿拉伯袍片(完整)
材料1 丰收的季节,陕北高原到处是红彤彤的苹果。63岁的赵家村村民老赵看着果实,满眼的喜悦。借助改革开放的东风,四十年来他用劳动创造了财富,改变了全家的生活状况,也见证了他们村乃至黄土高原翻天覆地的变化。 1987年,来自远方的“包产到户”消息传遍
定义:①初级群体:指成员之间彼此熟悉、了解,人际关系密切,具有较浓厚感情色彩的群体。②次级群体:指其成员为了某种特定的目标集合在一起,通过明确的规章制度结成正规关系的社会群体。③敌人:互相仇恨而敌对的人或敌对的方面。典型例证:(1)在同一个公司同
最新回复
(
0
)