首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有级数 (Ⅰ)求此级数的收敛域; (Ⅱ)证明此级数的和函数y(χ)满足微分方程y〞-y=-1; (Ⅲ)求微分方程y〞-y=-1的通解,并由此确定该级数的和函数y(χ).
设有级数 (Ⅰ)求此级数的收敛域; (Ⅱ)证明此级数的和函数y(χ)满足微分方程y〞-y=-1; (Ⅲ)求微分方程y〞-y=-1的通解,并由此确定该级数的和函数y(χ).
admin
2017-11-09
75
问题
设有级数
(Ⅰ)求此级数的收敛域;
(Ⅱ)证明此级数的和函数y(χ)满足微分方程y〞-y=-1;
(Ⅲ)求微分方程y〞-y=-1的通解,并由此确定该级数的和函数y(χ).
选项
答案
(Ⅰ)对于任意χ,有 [*] 所以收敛域为(-∞,+∞). (Ⅱ)应用幂级数和函数的性质证明: y(χ)=2+[*],χ∈(-∞,+∞) [*] 即y(χ)满足微分方程y〞-y=-1. (Ⅲ)y〞-y=0的特征方程r
2
-1=0的特征根为r=±1,于是对应齐次方程的通解为Y=C
1
e
χ
+C
2
e
-χ
,又特解为y
*
=-1,故y〞-y=-1的通解为y=C
1
e
χ
+C
2
e
-χ
+1. 又幂级数的和函数y(χ)满足y〞(χ)-y(χ)=-1,且y(0)=2,y′=(0)=0,则y(χ)即为微分方程y〞-y=-1满足初值条件y|
χ=0
=2,y′|
χ=0
=0的特解, 即[*]则C
1
=C
2
=[*]. 所以和函数y(χ)=[*]+1.
解析
转载请注明原文地址:https://kaotiyun.com/show/s6X4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
设有方程组AX=0与BX=0,其中A,B都是m×n矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)
设A是m×s矩阵,B为s×n矩阵,则方程组BX=0与ABX=0同解的充分条件是().
设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn-1(t)df(n=1,2,…).
设的敛散性,并证明你的结论.
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
证明:,其中a>0为常数.
某集邮爱好者有一个珍品邮票,如果现在(t=0)就出售,总收入为R0元,如果收藏起来待来日出售,t年末总收入为R(t)=R0eξ(t),其中ξ(t)为随机变量,服从正态分布,假定银行年利率为r,并且以连续复利计息,试求收藏多少年后,再出售可使得总收入的期望现
设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x1)=0.
求方程karctanx一x=0不同实根的个数,其中k为参数.
随机试题
一般胎动消失后多长时间内胎心也会消失()。
产生乳头溢液最常见的疾病为
《中华人民共和国传染病防治法》列人分类管理的传染病共计
在流沙段开挖隧道,可采用的治理措施有()。[2010年真题]
下列关于我国期货交易代码的说法,正确的有( )。
对于消极的课堂行为,采用适当的惩罚【】
“人是社会关系的总和”这一观点强调的是人的()
行政机关举行行政许可听证活动的费用由参与听证的当事人分担。()
人们能够在不必分清楚情景或者任务具体发生了什么改变的情况下,就能够意识到或知觉到情境中已经有部分特征发生了变化,这一现象是
Whichaccidentwasreportedinthenews?
最新回复
(
0
)