首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有级数 (Ⅰ)求此级数的收敛域; (Ⅱ)证明此级数的和函数y(χ)满足微分方程y〞-y=-1; (Ⅲ)求微分方程y〞-y=-1的通解,并由此确定该级数的和函数y(χ).
设有级数 (Ⅰ)求此级数的收敛域; (Ⅱ)证明此级数的和函数y(χ)满足微分方程y〞-y=-1; (Ⅲ)求微分方程y〞-y=-1的通解,并由此确定该级数的和函数y(χ).
admin
2017-11-09
91
问题
设有级数
(Ⅰ)求此级数的收敛域;
(Ⅱ)证明此级数的和函数y(χ)满足微分方程y〞-y=-1;
(Ⅲ)求微分方程y〞-y=-1的通解,并由此确定该级数的和函数y(χ).
选项
答案
(Ⅰ)对于任意χ,有 [*] 所以收敛域为(-∞,+∞). (Ⅱ)应用幂级数和函数的性质证明: y(χ)=2+[*],χ∈(-∞,+∞) [*] 即y(χ)满足微分方程y〞-y=-1. (Ⅲ)y〞-y=0的特征方程r
2
-1=0的特征根为r=±1,于是对应齐次方程的通解为Y=C
1
e
χ
+C
2
e
-χ
,又特解为y
*
=-1,故y〞-y=-1的通解为y=C
1
e
χ
+C
2
e
-χ
+1. 又幂级数的和函数y(χ)满足y〞(χ)-y(χ)=-1,且y(0)=2,y′=(0)=0,则y(χ)即为微分方程y〞-y=-1满足初值条件y|
χ=0
=2,y′|
χ=0
=0的特解, 即[*]则C
1
=C
2
=[*]. 所以和函数y(χ)=[*]+1.
解析
转载请注明原文地址:https://kaotiyun.com/show/s6X4777K
0
考研数学三
相关试题推荐
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ"(y).
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设(I),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=,r(B)=2.(1)求方程组(I)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(I)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设有方程组AX=0与BX=0,其中A,B都是m×n矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)
证明S(x)=满足微分方程y(4)一y=0并求和函数S(x).
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足=1的解。(1)求F(x)关于x的幂级数;(2)求的和.
证明:当x≥0时,f(x)=∫0x(t一t2)sin2ntdt的最大值不超过
设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x1)=0.
设(X,Y)服从G={(x,y)|x2+y2≤1}上的均匀分布,试求给定Y=y的条件下X的条件概率密度函数fX|Y(x|y).
求方程karctanx一x=0不同实根的个数,其中k为参数.
随机试题
下肢牵引时抬高床尾的主要目的是
A.肩胛间区、胸骨旁、上腹部可闻及血管杂音B.大量蛋白尿C.尿中白细胞、脓细胞较多,且有尿频、尿急史D.满月脸,多毛E.发作时血压骤升伴剧烈头痛,心悸,不发作时血压可正常患者,男性.30岁。发作性血压增高,发作时血压达200/1
关于检查创伤时的注意事项中,哪项不正确
A.单侧喉返神经损伤B.双侧喉返神经损伤C.喉上神经内支损伤D.喉上神经外支损伤E.甲状旁腺损伤甲状腺大部切除术后出现手足抽搐的原因为
兽药经营企业应当注意收集兽药使用信息,不在发现内容应当及时向所在地兽医行政管理部门报告之列的是()。
在野外常见的边坡变形破坏类型中,边坡岩体主要在重力作用下向临空方向发生长期缓慢的塑性变形现象,称为()。
记账凭证核算形式是适用于一切企业的会计核算形式。()
公开发行证券的,主承销商应当在证券上市后20日内向中国证监会报备承销总结报告,总结说明发行期间的基本情况及新股上市后的表现,并提供下列文件:募集说明书单行本;承销协议及承销团协议;律师鉴证意见(限于首次公开发行);会计师事务所验资报告;中国证监会要求的其他
下列因素中,能够决定行业进入壁垒大小的因素包括()。
与淋巴瘤发病有关的病原体是
最新回复
(
0
)