首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=____.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=____.
admin
2019-07-17
66
问题
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=____.
选项
答案
na
解析
令x=一1,则f(1)=f(一1)+f(2),因f(x)是奇函数,得到f(2)=f(1)一f(一1)=2f(1)=2a.再令x=1,则f(3)=f(1)+f(2)=3f(1)=3a,现用数学归纳法证明f(n)=na.
当n=1,2,3时,已知或者已证.假设n≤k时,有f(k)=ka.当n=k+1时,f(k+1)=f(k一1)+f(2)=(k一1)a+2a=(k+1)a,故对一切正整数n,有f(n)=na,令x=0,则f(2)=f(0)+f(2),即f(0)=0=0.a,又f(x)是奇函数,故对一切负整数n有f(n)=一f(-n)=一(一ha)=na.所以对一切整数n,均有f(n)=na.
转载请注明原文地址:https://kaotiyun.com/show/9BN4777K
0
考研数学二
相关试题推荐
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设(Ⅰ)求(Ⅰ),(Ⅱ)的公共解.
设f(t)具有二阶导数求f(f’(x)),(f(f(x)))’.
证明:定积分I=sinx2dx>0.
证明:方阵A是正交矩阵,即AAT=E的充分必要条件是:(1)A的列向量组组成标准正交向量组,即或(2)A的行向量组组成标准正交向量组,即
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求矩阵A的特征值;
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记证明:λ1≤f(X)≤λn,mlnf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
确定下列函数的定义域,并做出函数图形。
(1988年)设f(χ)=,f[φ(χ)]=1-χ,且φ(χ)≥0,求φ(χ)及其定义域.
随机试题
对于《解决本国法和住所地法冲突公约》的表述,下列各项中不正确的是()
网上预订机票是________。
下列哪种相对分子质量的PEG可作为液体制剂的溶剂
高层建筑内电气竖井的位置,下列叙述正确的是()。
编制建设期借款还本付息表,如表7-19所示(单位:万元)。编制项目损益表(盈余公积金按10%提取),如表7-23所示(单位:万元)。注:以上计算结果均要求四舍五入保留两位小数。
关于发生误机、误车事故,下列处理正确的是()
原来交响曲中的第三乐章是小步舞曲,贝多芬将其改为进行曲。
湘军
科技创新始于技术、成于资本,这是近几十年全球科技创新一个突出的特征。科技创新创业的风险特征不同于成熟型产业经济行为,必须高度依赖资本,因为靠自身的积累和银行贷款往往是不现实的。而货币资本作为虚拟资本是每个企业的推动力和持续动力。货币资本是(
Manyapersoninthiscircumstance______foralongbreak.
最新回复
(
0
)