首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. (1)证明r=n; (2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ, ξ2,…,ξR,η1,η2,…,ηS线性无关.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. (1)证明r=n; (2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ, ξ2,…,ξR,η1,η2,…,ηS线性无关.
admin
2018-01-23
32
问题
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
(1)证明r
=n;
(2)设ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
分别为方程组AX=0与BX=0的基础解系,证明:ξ
,
ξ
2
,…,ξ
R
,η
1
,η
2
,…,η
S
线性无关.
选项
答案
(1)因为n=r(CA+DB)=r[*]; (2)因为r[*]=n,所以方程组[*]X=0只有零解,从而方程组AX=0与BX=0没有 非零的公共解,故ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/s8X4777K
0
考研数学三
相关试题推荐
设(i=1,2,3),其中D1={(x,y)|0≤x≤1,0≤y≤1},D2={(x,y)|0≤x≤1,0≤y≤},D3={(x,y)|0≤x≤1,x2≤y≤1},则_________.
设随机变量X与Y独立同分布,方差存在且不为零,记U=X—Y,V=X+Y,则U与V必然()
设a1,a2,a3均为3维列向量,记矩阵A=(a1,a2,a3),B=(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)如果∣A∣=1,则∣B∣=_______.
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则∣B∣=_______
设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明(2)利用(1)的结论计算定积分
证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且则f+’(0)存在,且f+’(0)=A.2—69(10,4分)设函数f(x),g(x)具有二阶导数,且g’’(x)<0.若g(x0)=a是g(x)的极值,则f(g(x))在x0取极大值的一
设z=f(u,x,y),u=xey,其中f有二阶连续偏导数,求
设总体X的分布函数为(X1,X2,…,X10)为来自总体X的简单随机样本,其观察值为1,1,3,1,0,0,3,1,0,1求参数θ的矩估计值;
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n-r+1个线性无关解;
随机试题
李某系A市建设银行某储蓄所记账员。某日下午下班时,李某发现本所出纳员陈某将2万元营业款遗忘在办公桌抽屉内(未锁)。当日下班后,李某趁所内无人之机,返回所内将该2万元取出,用报纸包好后藏到自己办公桌下面的垃圾箱中,并用纸箱遮住垃圾袋。次日上午案发,赃款被他人
使用氧气瓶要特别注意哪些问题?
保健食品的市场监督不包括
某幼儿园一群幼儿围着火炉烤火,教师张某离园取东西。幼儿甲玩火点燃了幼儿乙的衣服,乙带火跑出教室,被人发现将火扑灭。经检查,乙被烧伤面积达35%,住院治疗造成经济损失13000余元,这一损失应()。
临时使用土地的,使用者应当按照临时使用土地合同约定的用途使用土地,并不得修建()建筑物。
北海公司为上海证券交易所A股上市公司,2011年发生了如下有关金融资产转移的交易或事项:(1)2011年1月26日,北海公司在证券市场上出售持有并分类为可供出售金融资产的丁公司债券,所得价款为6000万元。出售时该债券的账面价值为5900万元,
如图所示为某高中物理教科书的一个实验,该实验在物理教学中用于学习的物理知识是()。
有的教师认为,既然科学的内容十分广泛,那么选择什么内容也就无所谓了,而有的教师则认为可以无限制地增加学习内容。这是没有正确理解()。
Napogaisa12-year-oldgirlinGhana(加纳),Africa.Itishardforherfamilytogetcleanwater.Everymorning,sheleaveshome
戒烟需要有很大的决心。
最新回复
(
0
)