首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. (1)证明r=n; (2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ, ξ2,…,ξR,η1,η2,…,ηS线性无关.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n. (1)证明r=n; (2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ, ξ2,…,ξR,η1,η2,…,ηS线性无关.
admin
2018-01-23
35
问题
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.
(1)证明r
=n;
(2)设ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
分别为方程组AX=0与BX=0的基础解系,证明:ξ
,
ξ
2
,…,ξ
R
,η
1
,η
2
,…,η
S
线性无关.
选项
答案
(1)因为n=r(CA+DB)=r[*]; (2)因为r[*]=n,所以方程组[*]X=0只有零解,从而方程组AX=0与BX=0没有 非零的公共解,故ξ
1
,ξ
2
,…,ξ
r
与η
1
,η
2
,…,η
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/s8X4777K
0
考研数学三
相关试题推荐
已知A,B为三阶矩阵,且有相同的特征值1,2,2,则下列命题:①A,B等价;②A,B相似;③若A,B为实对称矩阵,则A,B合同;④行列式|A一2E|=|2E—A|中;命题成立的有().
已知矩阵A=(Ⅰ)求A99,(Ⅱ)设3阶矩阵B=(a1,a2,a3)满足B2=BA.记B100=(β1,β2,β3,风),将Jβ1,β2,β3分别表示为a1,a2,a3的线性组合.
线性方程组有公共的非零解,求a,b的值和全部公共解。
设随机变量X与Y独立同分布,方差存在且不为零,记U=X—Y,V=X+Y,则U与V必然()
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x一e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
设a1,a2,a3均为3维列向量,记矩阵A=(a1,a2,a3),B=(a1+a2+a3,a1+2a2+4a3,a1+3a2+9a3)如果∣A∣=1,则∣B∣=_______.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:存在η∈(a,b),使得f(η)=g(η);
求下列齐次线性方程组的基础解系:
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
随机试题
某县一工厂员工因工作压力过大自缢身亡,公安机关到达现场勘查后.确定该员工为自杀,并向死者家属开具了不予立案通知书,死者母亲李某签字认可。一周后,李某到县城街道上喊冤,引来不明真相的群众围观。处警民警到达现场后,下列做法恰当的是:
Theprefixinpseudo-friendisa______.()
A.分类管理制度B.不良反应报告制度C.中药品种保护制度D.特殊药品管理制度E.注册审批制度药品生产(经营)企业和医疗机构对已经批准上市销售的药品实行()。
下列选项不属于垄断竞争形态的特征的是()。
地铁明挖基坑中多采用的钻机种类有()。
甲公司向乙公司发出要约,出售一批建筑材料。要约发出后,甲公司因进货渠道发生困难而拟撤回要约。甲公司撤回要约的通知应当()到达乙公司。
手足口病是由多种肠道病毒引起的常见传染病,病人大多为5岁以下的婴幼儿,患者的症状为手、足和口腔等部位出现疱疹。下列有关叙述正确的是()。
能够利用无线移动网络的是_______。
【B1】【B2】
A、Timislearningtorepairjeep.B、ItisdifficulttofindTimlately.C、Timistoobusytohelpthemnow.D、Timfindsitdiffi
最新回复
(
0
)