设f(x)在[0,+∞)内二阶可导,f(0)=-2,f′(0)=1.f″(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.

admin2022-08-19  27

问题 设f(x)在[0,+∞)内二阶可导,f(0)=-2,f′(0)=1.f″(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.

选项

答案因为f″(x)≥0,所以f′(x)单调不减,当x>0时,f′(x)≥f′(0)=1. [*] 则f(x)=0在(0,+∞)内至少有一个根,又由f′(x)≥1>0,得方程的根是唯一的.

解析
转载请注明原文地址:https://kaotiyun.com/show/sNR4777K
0

最新回复(0)