首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问: α4能否由α1,α2,α3线性表出,说明理由.
admin
2021-07-27
99
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,-1,2,0]
T
.记α
j
=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.问:
α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次线性方程组的基础解系只有一个非零解向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4-1=3,且由对应齐次线性方程组的通解知,α
1
-α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/sQy4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().
求微分方程x(y2-1)dx+y(x2-1)dy=0的通解.
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设n(n≥3)阶矩阵若r(A)=n一1,则a必为
设向量组α1,α2,α3为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
设矩阵B=,已知矩阵A相似于曰,则秩(A-2E)与秩(A-E)之和等于
设齐次线性方程组有非零解,且为正定矩阵,求a,并求出当|X|=时,XTAX的最大值。
随机试题
贷款的物质保证是否充足属于()。
全血及红细胞悬液运输温度为
实脾散的功用是五苓散的功用是
以下有关证据的认定的说法错误的是:
张某因采购货物签发一张票据给王某,胡某从王某处窃取该票据,陈某明知胡某系窃取所得但仍受让该票据,并将其赠与不知情的黄某,下列取得票据的当事人中,享有票据权利的是()。
王某于2002年6月8日向中国专利局提出发明专利申请,2003年6月6日就相同主题再次向该局提出申请,并申明要求优先权,则该项发明的新颖性判断,以2002年6月8日为时间标准。()
行政主体承担行政责任的具体方式中包括有()。
一、注意事项1.申论考试与传统的作文考试不同,是分析驾驭材料的能力与表达能力并重的考试。2.仔细阅读给定的资料,按照后面提出的“作答要求”依次作答在答题纸指定位置。二、给定资料1.2011年3月11日,日本东北部海域发生里氏9
Thinnerisn’talwaysbetter.Anumberofstudieshave【C1】________thatnormal-weightpeopleareinfactathigherriskofsomed
唯物辩证法认为发展的实质是
最新回复
(
0
)