首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型f(x1,x2,x3)=xTAx经正交变换化为y12+y22一2y32,又A*α=α,其中矩阵A*是矩阵A的伴随矩阵,α=(1,1,1)T,求此二次型的表达式.
已知三元二次型f(x1,x2,x3)=xTAx经正交变换化为y12+y22一2y32,又A*α=α,其中矩阵A*是矩阵A的伴随矩阵,α=(1,1,1)T,求此二次型的表达式.
admin
2020-10-21
44
问题
已知三元二次型f(x
1
,x
2
,x
3
)=x
T
Ax经正交变换化为y
1
2
+y
2
2
一2y
3
2
,又A
*
α=α,其中矩阵A
*
是矩阵A的伴随矩阵,α=(1,1,1)
T
,求此二次型的表达式.
选项
答案
因为二次型f=x
T
Ax经正交变换化为y
1
2
+y
2
2
—2
3
y
2
,所以矩阵A的特征值分别为1, 1,一2,从而|A|=一2,将A
*
α=α两端左乘矩阵A,得AA
*
α=Aα,由AA
*
=|A|E得 Aα=—2α,故α=(1,1,1)
T
是矩阵A的特征值一2对应的特征向量. 设矩阵A的特征值1对应的特征向量α
1
=(x
1
,x
2
,x
3
)
T
,因为A是对称矩阵,所以 α
T
α
1
=x
1
+x
2
+x
3
=0, 取α
11
=(—1,一1,2)
T
,α
12
=(1,一1,0)
T
,则α
11
,α
12
是矩阵A的特征值1对应的特征向 量,且正交. 将α
11
,α
12
,α单位化,得 [*] 取P=(β
1
,β
2
,β
3
)=[*],则P是正交矩阵,且 P
-1
AP=P
T
AP=A=[*] 所以 A=PAP
-1
=PAP
T
=[*] 故二次型的表达式为f=x
T
Ax=一2x
1
x
2
一2x
1
x
3
—2x
2
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/sT84777K
0
考研数学二
相关试题推荐
设f(χ+1)=af(χ)总成立,f′(0)=b,a≠1,b≠1为非零常数,则f(χ)在点χ=1处
若f(x)在x=0的某邻域内二阶连续可导,且=1,则下列正确的是().
设直线y=ax+b为曲线y=ln(x+2)的切线,若y=ax+b,x=0,x=4及曲线y=ln(x+2)围成的图形面积最小,求a,b的值。
设A为三阶实对称矩阵,若存在三阶正交矩阵,使得二次型求常数a,b.
设函数f(x)在(-∞,+∞)上连续,其导函数的图形如右图所示,则f(x)有().
设方程组,有无穷多解,矩阵A的特征值为λ1=1,λ2=-1,λ3=0,其对应的特征向量为a1=,a2=,a3=.求(A+E)X=0的通解.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数,求y=y(x).
设二次型f(x1,x2,x3)=ax12+ax22+ax32+2x1x2+2x1x3+2x2x3是正定的,则()
设D是由直线y=1,y=x,y=-x围成的有界区域,计算二重积分dxdy.
(2006年)试确定常数A,B,C的值,使得eχ(1+Bχ+Cχ2)=1+Aχo(χ3)其中o(χ3)是当χ→0时比χ3高阶的无穷小.
随机试题
人民警察使用武器造成人员伤亡的,应当立即向其所属公安机关报告,也可以向当地公安机关报告。
下列脂肪降解和氧化产物可以转化为糖的有
久病患者。纳食减少,疲乏无力,腹部胀满。但时有缓减,腹痛而喜按,舌胖嫩而苔润,脉细弱而无力。其病机是
疼痛的发作方式属于病史中的
从发展战略到对城市的开发控制,要经过一系列的环节,实施性发展规划才是控制城市开发直接依据。属于实施性发展规划的有:
下列选项中,属于宏观调控权的有()。
2001年7月,北京某国内旅行社组织接待了从外地来北京旅游的一个的团队,在参观游览过程中,作为地陪的高某为了节省时间并增加计划以外的游览项目,私自减少了两个计划景点,并一再对客人说,大家到北京来一次不容易,既然来了就应多看一些景点。在征得大多数客人同意并对
A.尿比重明显增加B.尿量明显减少C.两者都有D.两者都无一次饮0.9%盐水1000ml,可导致
村民李某,为了泄愤报复,多次破坏武装部队的军事飞机场的灯塔。由于被及时发现并抢修,并没有造成严重后果。对李某的行为应认定为()。
个体提高自我价值的过程,就是
最新回复
(
0
)