首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2 +(b1x1+b2x2+b3x3)2 , 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12 +y22
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2 +(b1x1+b2x2+b3x3)2 , 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12 +y22
admin
2021-01-19
32
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
选项
答案
记A=2αα
T
+ββ
T
,由于α,β正交,则有α
T
β=β
T
α=0,又α,β为单位向量,则‖α‖=1,于是α
T
α=1,同理β
T
β=1。 因为r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)≤2<3,所以,|A|=0,故0是A的特征值。 因为Aα=(2αα
T
+ββ
T
)α=2α,所以2是A的特征值。 因为Aβ=(2αα
T
+ββ
T
)β=β,所以1是A的特征值。 于是A的特征值为2,1,0。 因此f在正交变换下可化为标准行2y
1
2
+y
2
2
解析
转载请注明原文地址:https://kaotiyun.com/show/sV84777K
0
考研数学二
相关试题推荐
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
讨论函数f(χ)=的连续性,并指出间断点的类型.
设函数f(x)在闭区间[0,1]上可微,且满足λ∈(0,1)为常数.求证:在(0,1)内至少存在一点ξ,使f’(ξ)=一f(ξ)/ξ.
微分方程y〞+y=-2x的通解为_______.
已知A是3阶矩阵,A的特征值为1,—2,3.则(A*)*的特征值为_________.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(Ⅰ)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
设A为m×n矩阵,且r(A)=r()=r<n,其中=(Ab).(Ⅰ)证明方程组AX=b有且仅有n-r+1个线性无关解;(Ⅱ)若有三个线性无关解,求a,b的值及方程组的通解.
设二次型经过正交变换X=QY化为标准形,求参数a,b及正交矩阵Q.
求极限
随机试题
为什么在市场经济条件下还要加强和完善宏观调控?
Howcanhedosomuchwork?He_________staylateattheofficeeveryeveningandtakeworkhomeatweekends.
美国管理学家()将控制的内容归纳为对人员、财务、作业、信息和组织的总体绩效等五个方面的控制。
在项目融资活动中,SPC是指具有特定用途的公司。在下列融资方式中需要组建SPC的是( )。
风管系统按其系统的工作压力划分为()。
负债是过去的交易或事项所引起的潜在义务。()
根据下面材料回答下列小题。2008年,苏州市专利申请量继续快速增长,全年专利申请48558件,占江苏省总申请量的37.9%,同比增长43.9%。专利申请量在全国大中城市排名第二,仅次于上海。其中,发明专利申请量5371件,同比增长15.1%:实
今日某网站专门推出了一个专题,谈四大古典名著被英译得_________。其实,对异国文化的认识和了解是非常艰难的过程,有了解的欲望,比没有好;_________的了解,比完全隔绝好。填入划横线部分最恰当的一项是:
1919年,()发起了进步教育发展协会,提出了进步教育的七原则。
CharacteristicsofAmericanCultureⅠ.punctualityA.Goingtothetheater:be【1】twentyminutespriorB.Eateries’responsef
最新回复
(
0
)