首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设A,B为满足AB=O的任意两个非零矩阵,则必有( ).
[2004年] 设A,B为满足AB=O的任意两个非零矩阵,则必有( ).
admin
2019-05-10
47
问题
[2004年] 设A,B为满足AB=O的任意两个非零矩阵,则必有( ).
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
充分利用A
m×n
B
n×s
=O的两个常用结论:秩(A)+秩(B)≤n及B的每一列向量均为AX=0的解向量,A的每一行向量均为X
T
B=0的解向量求之.
解一 因AB=O,则B的每列均为AX=0的解,而B≠O,则AX=0有非零解,从而A的列向量组线性相关.又A的行向量均为X
T
B=0的解,而A≠0,故X
T
B=0有非零解,从而B的行向量组线性相关.仅(A)入选.
解二 设A为m×n矩阵,B为n×s矩阵.由AB=O及命题2.2.3.1(4)知,秩(A)+秩(B)≤n,而A≠O,B≠O,必有秩(A)≥1,秩(B)≥1,从而秩(A)<n,秩(B)<n,即A的列向量组线性相关,B的行向量组线性相关.仅(A)入选.
解三 设A为m×n矩阵,B为n×s矩阵.因A≠O,B≠O,且AB=O.由命题2.2.3.1(4)得到秩(A)<n,秩(B)<n,故
(1)A的列秩=秩(A)<n,即A的列向量组线性相关(见命题2.3.2.1(2));
(2)B的行秩=秩(B)<n,即B的行向量组线性相关.仅(A)入选.
转载请注明原文地址:https://kaotiyun.com/show/sVV4777K
0
考研数学二
相关试题推荐
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
计算定积分
a,b取何值时,方程组有解?
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设二次型2χ12+χ22+χ32+2χ1χ2+aχ2χ3的秩为2,则a=_______.
就a,b的不同取值,讨论方程组解的情况.
已知二次型f(x1,x2,x3)=x12一2x22+bx32一4x1x2+4x1x3+2ax2x3(a>0)经正交变换化成了标准形f=2y12+2y22一7y32,求a、b的值和正交矩阵P.
[2018年]x2[arctan(x+1)-arctanx]=___________.
[2018年]=__________。
[2017年]设函数f(x)在[0,1]上具有二阶导数,且f(1)>0,<0.方程f(x)f″(x)+[f′(x)]2=0,在(0,1)内至少有两个不同的实根.
随机试题
Nowshemustworktwiceashardtocatchupwithothers.
红细胞沉降率加速主要是由于()(2002年)
下面四句话中表达不正确的是()。
某采购中心为某中学采购一批教学用实验设备,鉴于所购实验设备较为简易,且规格、型号、标准一致,国内产品质量过关、货源充足,价格稳定等特点,决定采用询价方式进行采购。他们询价的步骤是:第一步,从本中心工作人员中抽调6人组成三个询价小组;第二步,将一定范围内的1
房地产转让是指房地产权利人通过买卖、赠予或者其他合法方式将其房地产转移给他人的行为。其中的其他合法方式主要包括()。
某业主与W了程公司依据FIDIC条款格式,订立了某机电安装工程的施工合同。合同规定:采用单价合同,因设计变更而发生的工程量变化,按实调整;同时视具体的变,动情况,业主与承包商商谈变更后的单价。合同工期为18天,工期每提前1天奖励2000元,每拖后1天罚款4
工程建设法律关系的构成要素包括( )。
2006年底,全国广告经营额达1573亿元,比上年增长156.7亿元,增长率达11.1%,增幅比上年下降了0.9个百分点。2006年底,全国共有广告经营单位143129户,比上年增加17735户,增长14.1%;广告从业人员1040099人,比上年增加99
简述从欧共体成立到20世纪七八十年代.西欧同美国的关系。
第一部用马克思主义观点系统阐述教育理论的著作是
最新回复
(
0
)