首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)与ψ(x,y)均为可微函数,且ψ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件ψ(x,y)=0下的一个极值点,下列选项正确的是
设f(x,y)与ψ(x,y)均为可微函数,且ψ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件ψ(x,y)=0下的一个极值点,下列选项正确的是
admin
2021-01-19
63
问题
设f(x,y)与ψ(x,y)均为可微函数,且ψ’(x,y)≠0.已知(x
0
,y
0
)是f(x,y)在约束条件ψ(x,y)=0下的一个极值点,下列选项正确的是
选项
A、若f’
x
(x
0
,y
0
)=0,则f’
y
(x
0
,y
0
)=0.
B、若f’
x
(x
0
,y
0
)=0,则f’
y
(x
0
,y
0
)≠0.
C、若f’
x
(x
0
,y
0
)≠0,则f’
y
(x
0
,y
0
)一0.
D、若f’
x
∥(x
0
,y
0
)≠0,则f’
y
(x
0
,y
0
)≠0.
答案
D
解析
[详解1] 构造拉格朗日函数
F(x,y)=f(x,y)+λψ(x,y).
令
若(x
0
,y
0
)为极值点,则(x
0
,y
0
)为上面方程组的解,即有
f’
y
(x
0
,y
0
)+λψ’
y
(x
0
,y
0
)=0.
代入第一个方程得
若f’
x
(x
0
,y
0
)≠0,则必有f’
y
(x
0
,y
0
)≠0,故应选(D).
[详解2]ψ’
y
≠0,由隐函数存在性定理,ψ(x,y)=0确定y=y’(x),且
。
此时x
0
为一元函数f(x,y(x))的极值点,从而有
,
即在(x
0
,y
0
)有
,
从而f’
x
(x
0
,y
0
)≠0f’
y
(x
x
,y
0
)≠0.
转载请注明原文地址:https://kaotiyun.com/show/wc84777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]连续,f(|cosχ|)dχ=A,则I=∫02πf(|cosχ|)dχ=_______.
交换积分次序∫01dyf(x,y)dx=________.
已知f(χ)=sinχ,f[φ(χ)=1-χ2,则φ(χ)_______的定义域为_______.
求不定积分
已知y=u(x)x是微分方程的解,则在初始条件y|x=2下,上述微分方程的特解是y=______.
(1997年试题,六)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a取何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
(2005年试题,15)设函数f(x)连续,且f(0)≠0,求极限
微分方程满足初始条件y(1)=1的特解是y=__________。
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
该患儿可能合并了该患儿拟给予泼尼松长程疗法,正确的疗程是
Apeculiarlypointedchinishismostmemorablefacial______.
肛管术后护理不宜()。
【背景资料】A机电安装公司总承包了一化工车间的机电安装工程,包括本车间范围内的槽罐制作安装任务。由于工期要求非常紧张,他们把设备安装分包给了B专业承包公司,把管道工程(包括蒸汽管道)分包给了C专业承包公司,把电气仪表分包给了D专业承包公司,把槽罐
奥肯定律适用于所有国家。()
2015年年底,甲公司受到大规模P2P行业“非法集资案”的影响,经济也陷入危机。2016年1月10日,甲公司债权人乙公司依法向A区人民法院申请甲公司破产,A区人民法院依法受理了乙公司提出的破产申请,指定丙律师事务所为管理人,于3月20日通知了已知债权人并予
今后,技术的交叉与融合会越来越明显。新一轮科技和产业革命的方向不会仅仅依赖于一两类学科或某种单一技术,而是多学科、多技术领域的高度交叉和深度融合。技术融合趋势决定了战略性新兴产业不可能也不应该孤立地发展,而是既要有利于推动传统产业的创新,又要有利于未来新兴
已知x1,x2,x3的算术平均值为a,y1,y2,y3的算术平均值为b,则2x1+3y1,2x2+3y2,2x3+3y3是算术平均值为().
Thiswasthecapital’smostanxiousweeksinceSeptember11th.OnMondaythegovernmentissuedaredalertthatterroristattac
TheAlzheimer’sAssociationandtheNationalAllianceforCaregivingestimatethatmenmakeupnearly40percentoffamilycare
最新回复
(
0
)